(2005•龍巖)把矩形紙片OABC放人直角坐標系中,使OA、OC分別落在x軸和y軸的正半軸上.
(1)將紙片OAB C折疊,使點A與C重合,用直尺和圓規(guī)在原圖上作出折疊后的圖形,并在圖中標明折疊后點B的對應點B’(不寫作法,保留作圖痕跡);
(2)在矩形OABC中,連接AC,且AC=2,tan∠OAC=,求A、C兩點的坐標;并求(1)中折痕的長.

【答案】分析:(1)首先確定折痕的位置,即AC的垂直平分線.然后根據(jù)對稱點的作法,作出點B關于對稱軸的對稱點,再順次連接即可;
(2)根據(jù)tan∠OAC=,可設OC=m,則OA=2m,再根據(jù)勾股定理列方程求解.進一步寫出點A和點C的坐標;根據(jù)相似三角形的性質(zhì)和軸對稱的性質(zhì)即可求解.
解答:解:(1)①作出AC中垂線,
②作出點B的對稱點B′,
③連接CB′、FB′、CE,
五邊形OEFB′C為折疊后的圖形.

(2)∵tan∠OAC=
∴OA=2OC.
設OC=m,則OA=2m,
∵OC2+OA2=AC2∴m2+4m2=20,
解得m=2或m=-2(負值舍去).
∴m=2,OA=4.
∴A(4,0),C(0,2).
,
∴PE==
∴EF=2PE=
∴折痕EF的長是
點評:綜合運用了軸對稱的性質(zhì)、相似三角形的判定和性質(zhì)以及軸對稱的性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圖形的對稱》(04)(解析版) 題型:解答題

(2005•龍巖)把矩形紙片OABC放人直角坐標系中,使OA、OC分別落在x軸和y軸的正半軸上.
(1)將紙片OAB C折疊,使點A與C重合,用直尺和圓規(guī)在原圖上作出折疊后的圖形,并在圖中標明折疊后點B的對應點B’(不寫作法,保留作圖痕跡);
(2)在矩形OABC中,連接AC,且AC=2,tan∠OAC=,求A、C兩點的坐標;并求(1)中折痕的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《尺規(guī)作圖》(02)(解析版) 題型:解答題

(2005•龍巖)把矩形紙片OABC放人直角坐標系中,使OA、OC分別落在x軸和y軸的正半軸上.
(1)將紙片OAB C折疊,使點A與C重合,用直尺和圓規(guī)在原圖上作出折疊后的圖形,并在圖中標明折疊后點B的對應點B’(不寫作法,保留作圖痕跡);
(2)在矩形OABC中,連接AC,且AC=2,tan∠OAC=,求A、C兩點的坐標;并求(1)中折痕的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《四邊形》(10)(解析版) 題型:解答題

(2005•龍巖)把矩形紙片OABC放人直角坐標系中,使OA、OC分別落在x軸和y軸的正半軸上.
(1)將紙片OAB C折疊,使點A與C重合,用直尺和圓規(guī)在原圖上作出折疊后的圖形,并在圖中標明折疊后點B的對應點B’(不寫作法,保留作圖痕跡);
(2)在矩形OABC中,連接AC,且AC=2,tan∠OAC=,求A、C兩點的坐標;并求(1)中折痕的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《平面直角坐標系》(02)(解析版) 題型:解答題

(2005•龍巖)把矩形紙片OABC放人直角坐標系中,使OA、OC分別落在x軸和y軸的正半軸上.
(1)將紙片OAB C折疊,使點A與C重合,用直尺和圓規(guī)在原圖上作出折疊后的圖形,并在圖中標明折疊后點B的對應點B’(不寫作法,保留作圖痕跡);
(2)在矩形OABC中,連接AC,且AC=2,tan∠OAC=,求A、C兩點的坐標;并求(1)中折痕的長.

查看答案和解析>>

同步練習冊答案