(2005•陜西)如圖,身高1.6m的小華站在距路燈桿5m的C點(diǎn)處,測得她在燈光下的影長CD為2.5m,則路燈的高度AB為    m.
【答案】分析:由于人和地面是垂直的,即和路燈平行,構(gòu)成相似三角形.根據(jù)對應(yīng)邊成比例,列方程解答即可.
解答:解:∵CE∥AB,
∴△ADB∽△EDC
∴AB:CE=BD:CD
即AB:1.6=7.5:2.5
解得:AB=4.8m.
即路燈的高度為4.8米.
點(diǎn)評:本題只要是把實(shí)際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求出路燈的高度,體現(xiàn)了轉(zhuǎn)化的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•陜西)如圖,在直角坐標(biāo)系中,⊙C過原點(diǎn)O,交x軸于點(diǎn)A(2,0),交y軸于點(diǎn)B(0,).
(1)求圓心的坐標(biāo);
(2)拋物線y=ax2+bx+c過O、A兩點(diǎn),且頂點(diǎn)在正比例函數(shù)y=-x的圖象上,求拋物線的解析式;
(3)過圓心C作平行于x軸的直線DE,交⊙C于D、E兩點(diǎn),試判斷D、E兩點(diǎn)是否在(2)中的拋物線上;
(4)若(2)中的拋物線上存在點(diǎn)P(x,y),滿足∠APB為鈍角,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•陜西)如圖,在直角坐標(biāo)系中,Rt△AOB的頂點(diǎn)坐標(biāo)分別為A(0,2),O(0,0),B(4,0),△AOB繞O點(diǎn)按逆時針方向旋轉(zhuǎn)90°得到△COD.
(1)求C、D兩點(diǎn)的坐標(biāo);
(2)求經(jīng)過C、D、B三點(diǎn)的拋物線的解析式;
(3)設(shè)(2)中的拋物線的頂點(diǎn)為P,AB的中點(diǎn)為M,試判斷△PMB是鈍角三角形、直角三角形還是銳角三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年陜西省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•陜西)如圖,在直角坐標(biāo)系中,Rt△AOB的頂點(diǎn)坐標(biāo)分別為A(0,2),O(0,0),B(4,0),△AOB繞O點(diǎn)按逆時針方向旋轉(zhuǎn)90°得到△COD.
(1)求C、D兩點(diǎn)的坐標(biāo);
(2)求經(jīng)過C、D、B三點(diǎn)的拋物線的解析式;
(3)設(shè)(2)中的拋物線的頂點(diǎn)為P,AB的中點(diǎn)為M,試判斷△PMB是鈍角三角形、直角三角形還是銳角三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年陜西省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•陜西)如圖,在直角坐標(biāo)系中,⊙C過原點(diǎn)O,交x軸于點(diǎn)A(2,0),交y軸于點(diǎn)B(0,).
(1)求圓心的坐標(biāo);
(2)拋物線y=ax2+bx+c過O、A兩點(diǎn),且頂點(diǎn)在正比例函數(shù)y=-x的圖象上,求拋物線的解析式;
(3)過圓心C作平行于x軸的直線DE,交⊙C于D、E兩點(diǎn),試判斷D、E兩點(diǎn)是否在(2)中的拋物線上;
(4)若(2)中的拋物線上存在點(diǎn)P(x,y),滿足∠APB為鈍角,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年陜西省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•陜西)如圖,直線CF垂直且平分AD于點(diǎn)E,四邊形ADCB是菱形,BA的延長線交CF于點(diǎn)F,連接AC.
(1)圖中有幾對全等三角形,請把它們都寫出來;
(2)證明:△ABC是正三角形.

查看答案和解析>>

同步練習(xí)冊答案