【題目】如圖1,一等腰直角三角尺GEF的兩條直角邊與正方形ABCD的兩條邊分別重合在一起.現(xiàn)正方形ABCD保持不動,將三角尺GEF繞斜邊EF的中點O(點O也是BD中點)按順時針方向旋轉.
(1)如圖2,當EF與AB相交于點M,GF與BD相交于點N時,通過觀察或測量BM,F(xiàn)N的長度,猜想BM,F(xiàn)N滿足的數(shù)量關系,并證明你的猜想;
(2)若三角尺GEF旋轉到如圖3所示的位置時,線段FE的延長線與AB的延長線相交于點M,線段BD的延長線與GF的延長線相交于點N,此時,(1)中的猜想還成立嗎?若成立,請證明;若不成立,請說明理由.
【答案】(1)BM=FN,證明見解析;(2)BM=FN仍然成立,證明見解析.
【解析】試題分析:(1)根據(jù)正方形和等腰直角三角形的性質可證明△OBM≌△OFN,所以根據(jù)全等的性質可知BM=FN;
(2)同(1)中的證明方法一樣,根據(jù)正方形和等腰直角三角形的性質得OB=OF,∠MBO=∠NFO=135°,∠MOB=∠NOF,可證△OBM≌△OFN,所以BM=FN.
試題解析:
(1)BM=FN.
證明:∵△GEF是等腰直角三角形,四邊形ABCD是正方形,
∴∠ABD=∠F=45°,OB=OF.
又∵∠BOM=∠FON,
∴△OBM≌△OFN.
∴BM=FN.
(2)BM=FN仍然成立.
證明:∵△GEF是等腰直角三角形,四邊形ABCD是正方形,
∴∠DBA=∠GFE=45°,OB=OF.
∴∠MBO=∠NFO=135°.
又∵∠MOB=∠NOF,
∴△OBM≌△OFN.
∴BM=FN.
科目:初中數(shù)學 來源: 題型:
【題目】仔細閱讀材料,再嘗試解決問題:
完全平方式 以及的值為非負數(shù)的特點在數(shù)學學習中有廣泛的應用,比如探求的最大(。┲禃r,我們可以這樣處理:
例如:①用配方法解題如下:
原式=+6x+9+1=
因為無論取什么數(shù),都有的值為非負數(shù),所以的最小值為0;此時 時,進而的最小值是0+1=1;所以當時,原多項式的最小值是1.
請根據(jù)上面的解題思路,探求:
(1)若(x+1)2+(y-2)2=0,則x= ,y= ..
(2)若x2+y2+6x-4y+13=0,求x,y的值;
(3)求的最小值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校組織初一同學春游,原計劃租用45座客車若干輛,但有15人沒有座位;如果租用同樣數(shù)量的60座大客車,則多出一輛,且其余客車恰好坐滿.已知45座客車日租金為每輛220元,60座大客車日租金為每輛300元.
求:(1)初一年級學生有多少人? 原計劃租用45座客車多少輛?
(2)要使每個學生都有座位,怎樣租用更合算?最低租金是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下列條件中,①∠A+∠B=∠C; ②∠A:∠B:∠C=1:2:3; ③∠A=∠B=∠C;
④∠A=∠B=2∠C; ⑤∠A=2∠B=3∠C,能確定△ABC為直角三角形的條件有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在四邊形ABCD中,∠D=37°,點E是BC邊上一點,沿AE折疊,點B落在AD上B′處,若B′E∥CD,則∠B=_________°.
(2)如圖2,在四邊形ABCD中,AB∥CD,點E是BC邊上一點,沿AE折疊,點B落在AD上B′處,點F是BC邊上一點,沿DF折疊,點C落在AD上C′處.B′E與C′F有何位置關系?為什么?
(3)如圖3,在四邊形ABCD中,∠B=∠D=90°,點E是BC邊上一點,沿AE折疊,點B落在AD上B′處,點F是AD邊上一點,沿CF折疊,點D落在BC上D′處.試問:AE與CF有何位置關系?說明理由.
(4)在四邊形ABCD中,點E是BC邊上一點,沿AE折疊.
①若點B落在四邊形ABCD內(nèi)B′處(如圖4),則∠1,∠2,∠BAD,∠B之間的數(shù)量關系為________.
②若點B落在四邊形ABCD外B′處(如圖5),則∠1,∠2,∠BAD,∠B之間的數(shù)量關系為 ______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是一塊四邊形綠地的示意圖,其中AB長為24米,BC長15米,CD長為20米,DA長7米,∠C=90°,求綠地ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學開展了“手機伴我健康行”主題活動.他們隨機抽取部分學生進行“手機使用目的”和“每周使用手機時間”的問卷調(diào)查,并繪制成如圖①②的統(tǒng)計圖。已知“查資料”人人數(shù)是40人。
請你根據(jù)以上信息解答以下問題
(1)在扇形統(tǒng)計圖中,“玩游戲”對應的圓心角度數(shù)是_______________。
(2)補全條形統(tǒng)計圖
(3)該校共有學生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△ADE關于直線l對稱,下列結論:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC與DE的延長線的交點一定落在直線l上.其中錯誤的有( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個城鎮(zhèn)A、B與兩條公路l1、l2位置如圖所示,電信部門需在C處修建一座信號發(fā)射塔,要求發(fā)射塔到兩個城鎮(zhèn)A、B的距離必須相等,到兩條公路l1,l2的距離也必須相等,那么點C應選在何處?請在圖中,用尺規(guī)作圖找出所有符合條件的點C.(不寫已知、求作、作法,只保留作圖痕跡)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com