年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(遼寧阜新卷)數(shù)學(xué)(解析版) 題型:選擇題
(3分)某幾何體的三視圖如圖所示,該幾何體是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(湖南婁底卷)數(shù)學(xué)(解析版) 題型:填空題
(3分)(2015•婁底)下列數(shù)據(jù)是按一定規(guī)律排列的,則第7行的第一個數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(湖南郴州卷)數(shù)學(xué)(解析版) 題型:解答題
(10分)(2015•郴州)閱讀下面的材料:
如果函數(shù)y=f(x)滿足:對于自變量x的取值范圍內(nèi)的任意x1,x2,
(1)若x1<x2,都有f(x1)<f(x2),則稱f(x)是增函數(shù);
(2)若x1<x2,都有f(x1)>f(x2),則稱f(x)是減函數(shù).
例題:證明函數(shù)f(x)=(x>0)是減函數(shù).
證明:假設(shè)x1<x2,且x1>0,x2>0
f(x1)﹣f(x2)=﹣==
∵x1<x2,且x1>0,x2>0
∴x2﹣x1>0,x1x2>0
∴>0,即f(x1)﹣f(x2)>0
∴f(x1)>f(x2)
∴函數(shù)f(x)=(x>0)是減函數(shù).
根據(jù)以上材料,解答下面的問題:
(1)函數(shù)f(x)=(x>0),f(1)==1,f(2)==.
計算:f(3)= ,f(4)= ,猜想f(x)=(x>0)是 函數(shù)(填“增”或“減”);
(2)請仿照材料中的例題證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(湖南郴州卷)數(shù)學(xué)(解析版) 題型:計算題
(6分)(2015•郴州)計算:()﹣1﹣20150+|﹣|﹣2sin60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(湖南郴州卷)數(shù)學(xué)(解析版) 題型:選擇題
(3分)(2015•郴州)如圖為一次函數(shù)y=kx+b(k≠0)的圖象,則下列正確的是( ).
A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(黑龍江牡丹江卷)數(shù)學(xué)(解析版) 題型:解答題
(10分)(2015•牡丹江)如圖,在平面直角坐標(biāo)系中,△ABC的頂點A在x軸負(fù)半軸上,頂點C在x軸正半軸上,頂點B在第一象限,過點B作BD⊥y軸于點D,線段OA,OC的長是一元二次方程x2﹣12x+36=0的兩根,BC=4,∠BAC=45°.
(1)求點A,C的坐標(biāo);
(2)反比例函數(shù)y=的圖象經(jīng)過點B,求k的值;
(3)在y軸上是否存在點P,使以P,B,D為頂點的三角形與以P,O,A為頂點的三角形相似?若存在,請寫出滿足條件的點P的個數(shù),并直接寫出其中兩個點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(黑龍江牡丹江卷)數(shù)學(xué)(解析版) 題型:填空題
(3分)(2015•牡丹江)位于我國東海的臺灣島是我國第一大島,面積約36000平方千米,數(shù)36000用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(貴州黔東南州卷)數(shù)學(xué)(解析版) 題型:解答題
(8分)解不等式組,并將它的解集在數(shù)軸上表示出來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com