如圖,鐵路道口的欄桿短臂長(zhǎng)1m,長(zhǎng)臂長(zhǎng)16m.當(dāng)短臂端點(diǎn)下降0.5m時(shí),長(zhǎng)臂端點(diǎn)升高(桿的寬度忽略不計(jì))(   )
A.4mB.6mC.8mD.12m
C.

試題分析:欄桿長(zhǎng)短臂在升降過程中,將形成兩個(gè)相似三角形,利用對(duì)應(yīng)邊成比例解題:
設(shè)長(zhǎng)臂端點(diǎn)升高x m,
,
∴x=8.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點(diǎn)D,連接OD,過點(diǎn)D作⊙O的切線,交AB延長(zhǎng)線于點(diǎn)E,交AC于點(diǎn)F.
(1)求證:OD∥AC;
(2)當(dāng)AB=10,時(shí),求AF及BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖是一張簡(jiǎn)易活動(dòng)餐桌,現(xiàn)測(cè)得OA=OB=30cm,OC=OD=50cm,現(xiàn)要求桌面離地面的高度為40cm,那么兩條桌腿的張角∠COD的大小應(yīng)為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,AB=AC,作以AB為直徑的⊙O與邊BC交于點(diǎn)D,過點(diǎn)D作⊙O的切線,分別交AC、AB的延長(zhǎng)線于點(diǎn)E、F.
(1)求證:EF⊥AC;
(2)若BF=2,CE=1.2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知線段AB及AB上一點(diǎn)P,當(dāng)P滿足下列哪一種關(guān)系時(shí),P為AB的黃金分割點(diǎn)①AP2=AB•PB;②AP=
5
-1
2
AB;③PB=
3-
5
2
AB;④
AP
PB
=
5
-1
2
;⑤
AB
AP
=
5
-1
2
.其中正確的是______(填“序號(hào)”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列每組中的兩個(gè)圖形形狀相同的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

為了測(cè)量校園水平地面上一棵樹的高度,數(shù)學(xué)興趣小組利用一組標(biāo)桿、皮尺,設(shè)計(jì)了如圖所示的測(cè)量方案.已知測(cè)量同眼睛A標(biāo)桿頂端F樹的頂端E同一直線上,此同學(xué)眼睛距地面1.6m標(biāo)桿長(zhǎng)為3.3m且BC=1m,CD=4m,則ED=             m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC為等腰直角三角形,∠BAC=90°,BC=2,E為AB上任意一動(dòng)點(diǎn),以CE為斜邊作等腰Rt△CDE,連接AD,下列說法:
①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四邊形ABCD的面積有最大值,且最大值為.其中,正確的結(jié)論是           。
A.①②④B.①③⑤C.②③④D.①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AD為等邊△ABC邊BC上的高,AB=4,AE=1,P為高AD上任意一點(diǎn),則EP+BP的最小值為(  )。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案