8、在△ABC中,∠A:∠B:∠C=1:1:2,則下列說(shuō)法錯(cuò)誤的是(  )
分析:首先根據(jù)△ABC角度之間的比,可求出各角的度數(shù).∠C為90度.根據(jù)勾股定理可分別判斷出各項(xiàng)的真假.
解答:解:由∠A:∠B:∠C=1:1:2;得:∠A=∠B=45°,∠C=90°;所以A正確.
由勾股定理可得:c2=a2+b2,所以B錯(cuò)誤.
因?yàn)椤螦=∠B=45°,則a=b,同時(shí)c2=a2+b2=2a2.所以C、D正確.
故選B.
點(diǎn)評(píng):本題考點(diǎn):三角形的性質(zhì)和勾股定理的應(yīng)用.首先可根據(jù)各角度之間的比值得出各角的度數(shù).度數(shù)相等的兩個(gè)角他們所對(duì)應(yīng)的邊長(zhǎng)度也相等.結(jié)合勾股定理即可得出B選項(xiàng)錯(cuò)誤.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點(diǎn)O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點(diǎn)F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點(diǎn)D,交AC于點(diǎn)E、已知△ABC中與△ABD的周長(zhǎng)分別為18cm和12cm,則線段AE的長(zhǎng)等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是( 。
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長(zhǎng)為(  )
A、
2
B、
3
C、2
D、以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案