在△ABC與△A′B′C′中,已知AB•B′C′=BC•A′B′,若使△ABC∽△A′B′C′,還應(yīng)增加的條件是


  1. A.
    AC=A′C′
  2. B.
    ∠A=∠A′
  3. C.
    ∠B=∠B′
  4. D.
    ∠C=∠C′
C
分析:已知兩邊對(duì)應(yīng)成比例,則需要添加這兩邊的夾角相等從而根據(jù)兩組對(duì)應(yīng)邊的比相等且相應(yīng)的夾角相等的兩個(gè)三角形相似來(lái)進(jìn)行判定.已知這兩邊的夾角分別為∠B與∠B′,所以添加∠B=∠B′.
解答:已知AB•B′C′=BC•A′B′,即;
如果△ABC∽△A′B′C′,則兩組對(duì)應(yīng)邊的夾角必相等,
即∠B=∠B′.
故選C.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)兩組對(duì)應(yīng)邊的比相等且相應(yīng)的夾角相等的兩個(gè)三角形相似的理解及運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC與△BDE中,∠ABC=∠BDE=90°,BC=DE,AC=BE,M、N分別為AB、BD中點(diǎn).連接MN交CE于點(diǎn)K.
(1)如圖1.當(dāng)C、B、D共線,AB=2BC時(shí),探索CK與EK之間的數(shù)量關(guān)系,并證明;
(2)如圖2,當(dāng)C、B、D不共線,且AB≠2BC時(shí),(1)中的結(jié)論是否成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;
(3)將題中的條件“∠ABC=∠BDE=90°,BC=DE,AC=BE”都去掉,再添加一個(gè)條件,寫出一個(gè)類似的對(duì)一般三角形都成立的問(wèn)題.(畫出圖形,寫出已知和結(jié)論,不用證明)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC與△ADE中,∠C=∠E,∠1=∠2,AC=AD=2AB=6,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC與△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.給出下列結(jié)論:
①∠AFC=∠C;②DE=CF;③△ADE∽△FBD;④∠BFD=∠CAF.
其中正確的結(jié)論是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC與△DEF中,給出下列條件①
AC
DF
=
BC
EF
,②∠A=∠D,③∠C=∠F,④
AC
AB
=
DF
DE
,從中任選2個(gè)條件能使△ABC與△DEF相似的概率為多少?請(qǐng)用樹狀圖或列表法分析(用序號(hào)代替).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC與△DCB中,∠A=∠D,要使△ABC≌△DCB,需要添加的一個(gè)條件是
∠ABC=∠DCB
∠ABC=∠DCB

查看答案和解析>>

同步練習(xí)冊(cè)答案