【題目】在△ABC中.BC邊的長為x,BC邊上的高為y,△ABC的面積為2.
(1)y關(guān)于x的函數(shù)關(guān)系式是________, x的取值范圍是________;
(2)在平面直角坐標(biāo)系中畫出該函數(shù)圖象;
(3)將直線y=-x+3向上平移a(a>0)個單位長度后與上述函數(shù)圖象有且只有一個交點(diǎn),請求出此時a的值.
【答案】(1)y=,x>0;(2)見解析;(3)1
【解析】
(1)根據(jù)三角形的面積公式即可得出函數(shù)關(guān)系式,再根據(jù)實(shí)際意義得出x的取值范圍;
(2)在平面直角坐標(biāo)系中畫出圖像即可;
(3)得到平移后的一次函數(shù)表達(dá)式,再和反比例函數(shù)聯(lián)立,得到一元二次方程,再結(jié)合交點(diǎn)個數(shù)得到根的判別式為零,即可求出a值.
解:(1)由題意可得:
S△ABC=xy=2,
則:y=,
其中x的取值范圍是x>0,
故答案為:y=,x>0;
(2)函數(shù)y=(x>0)的圖像如圖所示;
(3)將直線y=-x+3向上平移a(a>0)個單位長度后得到y=-x+3+a,
若與函數(shù)y=(x>0)只有一個交點(diǎn),
聯(lián)立:,
得:,
則,
解得:a=1或-7(舍),
∴a的值為1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)、(﹣2,1).
(1)作出與△ABC關(guān)于x軸對稱的△A1B1C1,A1的坐標(biāo)為 ;
(2)再將△A1B1C1繞點(diǎn)A1順時針旋轉(zhuǎn)90°得到△A1B2C2畫出△A1B2C2;
(3)求出在(2)的變換過程中,點(diǎn)B1到達(dá)點(diǎn)B2走過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年春節(jié)過后受新冠肺炎的疫情影響,在線學(xué)習(xí)成為同學(xué)們學(xué)習(xí)的重要渠道.我校計(jì)劃為學(xué)生提供以下四類在線學(xué)習(xí)方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學(xué)生需求,該校隨機(jī)對本校部分學(xué)生進(jìn)行了“你對哪類在線學(xué)習(xí)方式最感興趣”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)圖中信息,解答下列問題:
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中“在線討論”對應(yīng)的扇形圓心角的度數(shù);
(3)該校共有學(xué)生900人,請你估計(jì)該校對在線閱讀最感興趣的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以點(diǎn)A為圓心、AB的長為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)B,F為圓心、大于BF的長為半徑畫弧,兩弧交于點(diǎn)M,作射線AM交BC于點(diǎn)E,連接EF.下列結(jié)論中不一定成立的是( 。
A. BE=EFB. EF∥CDC. AE平分∠BEFD. AB=AE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,拋物線的圖象與軸交于兩點(diǎn),與軸交于點(diǎn),連接,二次函數(shù)的對稱軸與軸的交于點(diǎn),作射線.
拋物線的解析式為 ; 點(diǎn)坐標(biāo)為_ ;
求證:射線是的角平分線;
如圖②,點(diǎn)是的正半軸上一點(diǎn),過點(diǎn)作軸的平行線,與直線交于點(diǎn),與拋物線交于點(diǎn),連結(jié),將沿翻折,的對應(yīng)點(diǎn)為.在圖②中探究;是否存在點(diǎn),使褥恰好落在軸的正半軸上?若存在,請求出的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).
請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的圖補(bǔ)充完整;
(3)若居民區(qū)有8000人,請估計(jì)愛吃D粽的人數(shù);
(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里裝有分別標(biāo)有數(shù)字、、0、2的四個小球,除數(shù)字不同外,小球沒有任何區(qū)別,每次試驗(yàn)先攪拌均勻.
(1)從中任取一球,將球上的數(shù)字記為,求關(guān)于的一元二次方程有實(shí)數(shù)根的概率;
(2)從中任取一球,將球上的數(shù)字作為點(diǎn)的橫坐標(biāo),記為(不放回);再任取一球,將球上的數(shù)字作為點(diǎn)的縱坐標(biāo),記為,試用畫樹狀圖(或列表法)表示出點(diǎn)所有可能出現(xiàn)的結(jié)果,并求點(diǎn)落在第二象限內(nèi)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,我市某中學(xué)決定根據(jù)學(xué)生的興趣愛好組建課外興趣小組,因此學(xué)校隨機(jī)抽取了部分同學(xué)的興趣愛好進(jìn)行調(diào)查,將收集的數(shù)據(jù)整理并繪制成下列兩幅統(tǒng)計(jì)圖,請根據(jù)圖中的信息,完成下列問題:
(1)學(xué)校這次調(diào)查共抽取了 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“戲曲”所在扇形的圓心角度數(shù)為 ;
(4)設(shè)該校共有學(xué)生2000名,請你估計(jì)該校有多少名學(xué)生喜歡書法?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2-2x+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)A、B的坐標(biāo)分別為(-1,0),(3,0),點(diǎn)D為拋物線的頂點(diǎn),拋物線的對稱軸與直線BC相交于點(diǎn)E.
(1)求拋物線的解析式和點(diǎn)C的坐標(biāo);
(2)點(diǎn)P是直線BC下方的拋物線上一動點(diǎn),當(dāng)△PBC的面積最大時,請求出P點(diǎn)的坐標(biāo)和△PBC的最大面積;
(3)點(diǎn)Q是線段BD上的一動點(diǎn),將△DEQ沿邊EQ翻折得到△,是否存在點(diǎn)Q使得△與△BEQ的重疊部分圖形為直角三角形?若存在,請直接寫出BQ的長,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com