如圖,在Rt△ABC中,∠C=90°,以AC為一邊向外作等邊三角形ACD,點E為AB的中點,連結DE.

(1)證明DE∥CB;

(2)探索AC與AB滿足怎樣的數(shù)量關系時,四邊形DCBE是平行四邊形.

考點:

平行四邊形的判定;全等三角形的判定與性質;等邊三角形的性質.

分析:

(1)首先連接CE,根據(jù)直角三角形的性質可得CE=AB=AE,再根據(jù)等邊三角形的性質可得AD=CD,然后證明△ADE≌△CDE,進而得到∠ADE=∠CDE=30°,再有∠DCB=150°可證明DE∥CB;

(2)當AC=或AB=2AC時,四邊形DCBE是平行四邊形.若四邊形DCBE是平行四邊形,則DC∥BE,∠DCB+∠B=180°進而得到∠B=30°,再根據(jù)三角函數(shù)可推出AC=或AB=2AC.

解答:

(1)證明:連結CE.

∵點E為Rt△ACB的斜邊AB的中點,

∴CE=AB=AE.

∵△ACD是等邊三角形,

∴AD=CD.

在△ADE與△CDE中,,

∴△ADE≌△CDE(SSS),

∴∠ADE=∠CDE=30°.

∵∠DCB=150°,

∴∠EDC+∠DCB=180°.

∴DE∥CB.

(2)解:∵∠DCB=150°,若四邊形DCBE是平行四邊形,則DC∥BE,∠DCB+∠B=180°.

∴∠B=30°.

在Rt△ACB中,sinB=,sin30°=,AC=或AB=2AC.

∴當AC=或AB=2AC時,四邊形DCBE是平行四邊形.

點評:

此題主要考查了平行線的判定、全等三角形的判定與性質,以及平行四邊形的判定,關鍵是掌握直角三角形的性質,以及等邊三角形的性質.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•莆田質檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案