如圖,正方形ABCD中,E是BC邊上一點(diǎn),以E為圓心,EC為半徑的半圓與以A為圓心,AB為半徑的圓弧外切,則tan∠EAB的值是   
【答案】分析:設(shè)切點(diǎn)為P,則AP=AD,EP=CE,根據(jù)已知利用勾股定理即可求得CE的長(zhǎng).從而即可得出∠EAB的正切值.
解答:解:∵兩圓弧外切
∴AE的長(zhǎng)即為兩圓的半徑之和;
設(shè)切點(diǎn)為P,正方形ABCD的邊長(zhǎng)是4k,則AP=AD,EP=CE,
在Rt△ABE中,由勾股定理列出方程AB2+(BC-CE)2=(AP+EP)2,
即(4k)2+(4k-CE)2=(4k+CE)2
解得CE=k.
故BE=3k,
所以tan∠EAB的值是
故答案為:
點(diǎn)評(píng):本題充分利用了正方形的性質(zhì)及圓弧外切的特點(diǎn),列方程求解問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案