【題目】如圖,的半徑為,點外的一點,,點上的一個動點,連接,直線垂直平分,當(dāng)直線相切時,的長度為( )

A. 10 B. C. 11 D.

【答案】B

【解析】

連接OA、OC(C為切點),過點OOBAP.根據(jù)題意可知四邊形BOCD為矩形,從而可知:BP=8+x,設(shè)AB的長為x,在RtAOBRtOBP中,由勾股定理列出關(guān)于x的方程解得x的長,從而可計算出PA的長度.

如圖所示.連接OA、OC(C為切點),過點OOBAP.

設(shè)AB的長為x,在RtAOB中,OB2=OA2-AB2=16-x2,

l與圓相切,

OCl.

∵∠OBD=OCD=CDB=90°,

∴四邊形BOCD為矩形.

BD=OC=4.

∵直線l垂直平分PA,

PD=BD+AB=4+x.

PB=8+x.

RtOBP中,OP2=OB2+PB2,即16-x2+(8+x)2=102,解得x=

PA=2AD=2×(+4)=

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】密碼的使用在現(xiàn)代社會是極其重要的.現(xiàn)有一種密碼的明文(真實文),其中的字母是按計算機鍵盤順序分別與26個自然數(shù)1,23……25,26對應(yīng)(見下表).設(shè)明文的任一字母所對應(yīng)的自然數(shù)為x,且通過某種規(guī)定的對應(yīng)運算把x轉(zhuǎn)化為對應(yīng)的自然數(shù)x',x'對應(yīng)的字母為密文.

例如,有一種譯碼方法按照以下變換實現(xiàn):

x→x',其中x'(3x+2)26除所得余數(shù)與1之和(1≤x≤26).x=1時,x'=6,即明文Q譯為密文Y

x=10時,x'=7,即明文P譯為密文U.現(xiàn)有某種變換,將明文字母對應(yīng)的自然數(shù)x變換為密文字母對應(yīng)的自然數(shù)x'x→x',x'(3x+m)26除所得余數(shù)與1之和(1≤x≤26,1≤m≤26).已知運用此變換,明文V譯為密文M

(1)求此變換中m的值;

(2)求明文VKHA對應(yīng)的密文.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)

(1)在圖中畫出裁剪示意圖,用實線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時,裁掉的正方形邊長多大?

(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費用為0.5元,底面每平方分米的費用為2元,裁掉的正方形邊長多大時,總費用最低,最低為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角ABC中,∠BAC90°,ADBCD,∠ABC的平分線分別交AC、ADE、F兩點,MEF的中點,延長AMBC于點N,連接DM,NE.下列結(jié)論:①AEAF;②AMEF;③AEF是等邊三角形;④DFDN,⑤ADNE.其中正確的結(jié)論有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依次為23、46,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時不破壞此木框,則任兩個螺絲間的距離的最大值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,在平面直角坐標(biāo)系中,一次函數(shù)的圖像交x軸于點A,交y軸于點B,點C是點A關(guān)于y軸對稱的點,過點Cy軸平行的射線CD,交直線AB與點D,點P是射線CD上的一個動點.

1)求點A、B的坐標(biāo).

2)如圖2,將△ACP沿著AP翻折,當(dāng)點C的對應(yīng)點E落在直線AB上時,求點P的坐標(biāo).

3)若直線OP與直線AD有交點,不妨設(shè)交點為Q(不與點D重合),連接CQ,是否存在點P,使得SCPQ =2SDPQ,若存在,請直接寫出點P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為原點,點,點,把繞點逆時針旋轉(zhuǎn),得,點旋轉(zhuǎn)后的對應(yīng)點為、,記旋轉(zhuǎn)角為ɑ.

如圖,若ɑ,求的長;

如圖,若ɑ,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,形如量角器的半圓的直徑,形如三角板的中,,,,半圓的速度從左向右運動,在運動過程中,點、始終在直線上,設(shè)運動時間為,當(dāng)時,半圓的左側(cè),

當(dāng)時,點在半圓________,當(dāng)時,點在半圓________;

當(dāng)為何值時,的邊與半圓相切?

當(dāng)為何值時,的邊與半圓相切?

查看答案和解析>>

同步練習(xí)冊答案