已知:如圖,在?ABCD中,O為對角線BD的中點(diǎn),過點(diǎn)O的直線EF分別交AD,BC于E,F(xiàn)兩點(diǎn),連結(jié)BE,DF.
(1)求證:△DOE≌△BOF;
(2)當(dāng)∠DOE等于多少度時,四邊形BFDE為菱形?請說明理由.
考點(diǎn):平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),菱形的判定
專題:幾何綜合題
分析:(1)利用平行四邊形的性質(zhì)以及全等三角形的判定方法得出△DOE≌△BOF(ASA);
(2)首先利用一組對邊平行且相等的四邊形是平行四邊形得出四邊形EBFD是平行四邊形,進(jìn)而利用垂直平分線的性質(zhì)得出BE=ED,即可得出答案.
解答:(1)證明:∵在?ABCD中,O為對角線BD的中點(diǎn),
∴BO=DO,∠EDB=∠FBO,
在△EOD和△FOB中
∠EDO=∠OBF
DO=BO
∠EOD=∠FOB
,
∴△DOE≌△BOF(ASA);

(2)解:當(dāng)∠DOE=90°時,四邊形BFDE為菱形,
理由:∵△DOE≌△BOF,
∴OE=OF,
又∵OB=OD
∴四邊形EBFD是平行四邊形,
∵∠EOD=90°,
∴EF⊥BD,
∴四邊形BFDE為菱形.
點(diǎn)評:此題主要考查了平行四邊形的性質(zhì)以及全等三角形的判定與性質(zhì)和菱形的判定等知識,得出BE=DE是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+1(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(-1,0).設(shè)t=a+b+1,則t值的變化范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

今年“五一”小長假期間,某市外來與外出旅游的總?cè)藬?shù)為226萬人,分別比去年同期增長30%和20%,去年同期外來旅游比外出旅游的人數(shù)多20萬人.求該市今年外來和外出旅游的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為鼓勵居民節(jié)約用電,我市自2012年以來對家庭用電收費(fèi)實行階梯電價,即每月對每戶居民的用電量分為三個檔級收費(fèi),第一檔為用電量在180千瓦時(含180千瓦時)以內(nèi)的部分,執(zhí)行基本價格;第二檔為用電量在180千瓦時到450千瓦時(含450千瓦時)的部分,實行提高電價;第三檔為用電量超出450千瓦時的部分,執(zhí)行市場調(diào)節(jié)價格. 我市一位同學(xué)家今年2月份用電330千瓦時,電費(fèi)為213元,3月份用電240千瓦時,電費(fèi)為150元.已知我市的一位居民今年4、5月份的家庭用電量分別為160和 410千瓦時,請你依據(jù)該同學(xué)家的繳費(fèi)情況,計算這位居民4、5月份的電費(fèi)分別為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程:
2
x-2
+3=
1-x
2-x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在一個不透明的袋中裝有四個球,分別標(biāo)有字母A、B、C、D,這些球除了所標(biāo)字母外都相同,另外,有一面白色、另一面黑色、大小相同的4張正方形卡片,每張卡片上面的字母相同,分別標(biāo)有A、B、C、D.最初,擺成圖2的樣子,A、D是黑色,B、C是白色.
  操作:①從袋中任意取一個球;
       ②將與取出球所標(biāo)字母相同的卡片翻過來;
       ③將取出的球放回袋中
再次操作后,觀察卡片的顏色.
(如:第一次取出球A,第二次取出球B,此時卡片的顏色變
(1)求四張卡片變成相同顏色的概率;
(2)求四張卡片變成兩黑兩白,并恰好形成各自顏色矩形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個口袋中有3個大小相同的小球,球面上分別寫有數(shù)字1、2、3,從袋中隨機(jī)地摸出一個小球,記錄下數(shù)字后放回,再隨機(jī)地摸出一個小球.
(1)請用樹形圖或列表法中的一種,列舉出兩次摸出的球上數(shù)字的所有可能結(jié)果;
(2)求兩次摸出的球上的數(shù)字和為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某景區(qū)的三個景點(diǎn)A、B、C在同一線路上,甲、乙兩名游客從景點(diǎn)A出發(fā),甲步行到景點(diǎn)C,乙乘景區(qū)觀光車先到景點(diǎn)B,在B處停留一段時間后,再步行到景點(diǎn)C.甲、乙兩人離開景點(diǎn)A后的路程S(米)關(guān)于時間t(分鐘)的函數(shù)圖象如圖所示.根據(jù)以上信息回答下列問題:
(1)乙出發(fā)后多長時間與甲第一次相遇?
(2)要使甲到達(dá)景點(diǎn)C時,乙與C的路程不超過400米,則乙從景點(diǎn)B步行到景點(diǎn)C的速度至少為多少?(結(jié)果精確到0.1米/分鐘)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

正方形ABCD的對角線AC、BD相交于O,直角三角板EFG的直角頂點(diǎn)E在線段AC上,EF、EG與BC、CD邊相交于M、N.
(1)如圖1,若E點(diǎn)與O點(diǎn)重合,求證:EM=EN;
(2)如圖2,若E點(diǎn)不與O點(diǎn)重合:
①EM還等于EN嗎?說明理由;
②試找出MC、CN、EC三者之間的等量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案