【題目】如圖,在等腰直角三角形中,,點(diǎn)的中點(diǎn),將繞點(diǎn)旋轉(zhuǎn)至的位置,使,其中點(diǎn)的運(yùn)動(dòng)路徑為弧,連接,則圖中陰影部分的面積為_______

【答案】

【解析】

連接MC',由可證得△A'MH為等腰直角三角形,進(jìn)而可求得A'H,CHMH的長,再利用旋轉(zhuǎn)角相等求得∠CMC'的度數(shù),最后利用扇形的面積公式計(jì)算即可.

解:如圖,連接MC',

在等腰直角三角形中,,點(diǎn)的中點(diǎn),

∴∠A=45°AM=BM=2,AC=

旋轉(zhuǎn),

∴∠A'=∠A=45°,A'C'=AC=,A'M=AM=2,

∴△A'MH為等腰直角三角形,

∴A'H=MH=A'M=∠A'MH=45°,

∴C'H=A'C'A'H=,

SMHC'=

Rt△MHC'中,MC'=,

又∵∠C'MC=∠A'MH=45°,

S扇形CMC'=

∴陰影部分面積為SMHC'+S扇形CMC'=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,旗桿AB的頂端B在夕陽的余輝下落在一個(gè)斜坡上的點(diǎn)D處,某校數(shù)學(xué)課外興趣小組的同學(xué)正在測(cè)量旗桿的高度,在旗桿的底部A處測(cè)得點(diǎn)D的仰角為15°,AC10米,又測(cè)得∠BDA45°.已知斜坡CD的坡度為i1,求旗桿AB的高度(,結(jié)果精確到個(gè)位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校植物園沿路護(hù)欄的紋飾部分設(shè)計(jì)成若干個(gè)全等菱形圖案,每增加一個(gè)菱形圖案,紋飾長度就增加dcm,如圖所示,已知每個(gè)菱形圖案的邊長為10cm,其中一個(gè)內(nèi)角為60°.

(1)求一個(gè)菱形圖案水平方向的對(duì)角線長;

(2)d26,紋飾的長度L能否是6010cm?若能,求出菱形個(gè)數(shù);若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩塊直角三角板如圖1放置,等腰直角三角板的直角頂點(diǎn)是點(diǎn),,直角板的直角頂點(diǎn)上,且.三角板固定不動(dòng),將三角板繞點(diǎn)逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為

1)當(dāng)_______時(shí),;

2)當(dāng)時(shí),三角板繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至如圖2位置,設(shè)交于點(diǎn),于點(diǎn),求四邊形的面積.

3)如圖3,設(shè),四邊形的面積為,求關(guān)于的表達(dá)式(不用寫的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+3(a≠0)經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C

(1)求此拋物線的解析式;

(2)若點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn)(不點(diǎn)B,C重合),過點(diǎn)Py軸的平行線交直線BC于點(diǎn)D,求PD的長度最大時(shí)點(diǎn)P的坐標(biāo).

(3)設(shè)拋物線的對(duì)稱軸與BC交于點(diǎn)E,點(diǎn)M是拋物線的對(duì)稱軸上一點(diǎn),Ny軸上一點(diǎn),是否存在這樣的點(diǎn)M和點(diǎn)N,使得以點(diǎn)C、E、M、N為頂點(diǎn)的四邊形是菱形?如果存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,以AB為直徑作半圓,點(diǎn)PCD中點(diǎn),BP與半圓交于點(diǎn)Q,連結(jié)DQ,給出如下結(jié)論:①;②;③;④,其中正確結(jié)論是______填寫序號(hào)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x軸相交于A、B兩點(diǎn),與y軸交于C,頂點(diǎn)為D,拋物線的對(duì)稱軸DFBC相交于點(diǎn)E,與x軸相交于點(diǎn)F

1)求線段DE的長;

2)設(shè)過E的直線與拋物線相交于M(x1,y1),N(x2,y2),試判斷當(dāng)|x1x2|的值最小時(shí),直線MNx軸的位置關(guān)系,并說明理由;

3)設(shè)Px軸上的一點(diǎn),∠DAO+DPO=α,當(dāng)tanα=4時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會(huì)積極參與疫情防控工作,某市為了盡快完成100萬只口罩的生產(chǎn)任務(wù),安排甲、乙兩個(gè)大型工廠完成.已知甲廠每天能生產(chǎn)口罩的數(shù)量是乙廠每天能生產(chǎn)口罩的數(shù)量的1.5倍,并且在獨(dú)立完成60萬只口罩的生產(chǎn)任務(wù)時(shí),甲廠比乙廠少用5天.問至少應(yīng)安排兩個(gè)工廠工作多少天才能完成任務(wù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案