分析 過D作DE⊥BC交BC的延長線于E,得到∠E=90°,根據(jù)三角形函數(shù)的定義得到DE=2$\sqrt{2}$,推出四邊形ABCD是菱形,根據(jù)菱形的性質(zhì)得到AC⊥BD,AO=CO,BO=DO=$\sqrt{6}$,根據(jù)勾股定理得到結(jié)論.
解答 解:過D作DE⊥BC交BC的延長線于E,
則∠E=90°,
∵sin∠DBC=$\frac{{\sqrt{3}}}{3}$,BD=$2\sqrt{6}$,
∴DE=2$\sqrt{2}$,
∵CD=3,
∴CE=1,BE=4,
∴BC=3,
∴BC=CD,
∴∠CBD=∠CDB,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠CDB,
∴AB∥CD,
同理AD∥BC,
∴四邊形ABCD是菱形,
連接AC交BD于O,
則AC⊥BD,AO=CO,BO=DO=$\sqrt{6}$,
∴OC=$\sqrt{B{C}^{2}-B{O}^{2}}$=$\sqrt{3}$,
∴AC=2$\sqrt{3}$.
點評 本題考查了菱形的判定和性質(zhì),解直角三角形,正確的作出輔助線是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | b<c<a | B. | a<c<b | C. | b<a<c | D. | c<b<a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$cm | B. | 4$\sqrt{3}$cm | C. | 6$\sqrt{3}$cm | D. | 8$\sqrt{3}$cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com