【題目】已知二次函數(shù)(a>0)的圖象與x軸的負(fù)半軸和正半軸分別交于A、B兩點,與y軸交于點C,它的頂點為P,直線CP與過點B且垂直于x軸的直線交于點D,且CP:PD=2:3.
(1)求A、B兩點的坐標(biāo);
(2)若tan∠PDB=,求這個二次函數(shù)的關(guān)系式.
【答案】(1)A(,0);(2).
【解析】
試題分析:(1)由二次函數(shù)的解析式可求出對稱軸為x=1,過點P作PE⊥x軸于點E,所以OE:EB=CP:PD;
(2)過點C作CF⊥BD于點F,交PE于點G,構(gòu)造直角三角形CDF,利用tan∠PDB=即可求出FD,由于△CPG∽△CDF,所以可求出PG的長度,進(jìn)而求出a的值,最后將A(或B)的坐標(biāo)代入解析式即可求出c的值.
試題解析:(1)過點P作PE⊥x軸于點E,∵,∴該二次函數(shù)的對稱軸為:x=1,∴OE=1,∵OC∥BD,∴CP:PD=OE:EB,∴OE:EB=2:3,∴EB=,∴OB=OE+EB=,∴B(,0).∵A與B關(guān)于直線x=1對稱,∴A(,0);
(2)過點C作CF⊥BD于點F,交PE于點G,令x=1代入,∴y=c﹣a,令x=0代入,∴y=c,∴PG=a,∵CF=OB=,∴tan∠PDB=,∴FD=2,∵PG∥BD,∴△CPG∽△CDF,∴,∴PG=,∴a=,∴,把A(,0)代入,∴解得:c=﹣1,∴該二次函數(shù)解析式為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學(xué)校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面積.
(2)若每種植1平方米草皮需要200元,問總共需投入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在ABCD中,AE⊥BC,CF⊥AD,E,F分別為垂足.
(1)求證:△ABE≌△CDF;
(2)求證:四邊形AECF是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,點、、在小正方形的頂點上.
(1)在圖中畫出與關(guān)于直線成軸對稱的;
(2)在直線上找一點,使的值最小;
(3)若是以為腰的等腰三角形,點在圖中小正方形的頂點上.這樣的點共有_______個.(標(biāo)出位置)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,M、N分別為兩平行線AB、CD上兩點,點E位于兩平行線之間,試探究:∠MEN與∠AME和∠CNE之間有何關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足為H,與AC平行的圓O的一條切線交CD的延長線于點M,交AB的延長線于點E,切點為F,連接AF交CD于點N.
(1)求證:CA=CN;
(2)連接DF,若cos∠DFA=,AN=,求圓O的直徑的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 ABCD中AB= 3,點B在邊CD上,且 CD=3DE. 將△ADE沿AE對折至△AFE,延長EF交邊BC 于點G,連接AG,CF下列結(jié)論:①點G是BC的中點;②FG=FC;③GAE=45;④GE=BG+DE.其中正確的是( )
A. ①② B. ①③④ C. ②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生的學(xué)業(yè)負(fù)擔(dān)過重會嚴(yán)重影響學(xué)生對待學(xué)習(xí)的態(tài)度.為此我市教育部門對部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近8000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道對于x軸上的任意兩點A(x1,0),B(x2,0),有AB=|x1﹣x2|,而對于平面直角坐標(biāo)系中的任意兩點P1(x1,y1),P2(x2,y2),我們把|x1﹣x2|+|y1﹣y2|稱為Pl,P2兩點間的直角距離,記作d(P1,P2),即d(P1,P2)=|x1﹣x2|+|y1﹣y2|.
(1)已知O為坐標(biāo)原點,若點P坐標(biāo)為(1,3),則d(O,P)= ;
(2)已知O為坐標(biāo)原點,動點P(x,y)滿足d(O,P)=2,請寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫出所有符合條件的點P所組成的圖形;
(3)試求點M(2,3)到直線y=x+2的最小直角距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com