已知⊙O1與⊙O2的圓心距為5,⊙O1的半徑為2,當⊙O2的半徑r滿足條件________時,兩圓相離.

0<r<3或r>7
分析:兩圓相離,分兩種情況:外離或內含.
設兩圓的半徑分別為R和r,且R≥r,圓心距為d:
外離,則d>R+r;外切,則d=R+r;相交,則R-r<d<R+r;內切,則d=R-r;內含,則d<R-r.
解答:當外離時,圓心距大于兩圓半徑的和,∴r>5+2=7;
當內含時,圓心距小于兩圓半徑的差,∴0<r<5-2=3.
∴0<r<3或r>7.
點評:本題利用了兩圓相離時,圓心距與半徑的關系求解,注意有兩種情況.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

6、已知⊙O1與⊙O2的半徑分別為3cm和4cm,若O1O2=7cm,則⊙O1與⊙O2的位置關系是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、已知⊙O1與⊙O2的半徑分別是2cm、4cm,圓心距O1O2為3cm,則⊙O1與⊙O2的位置關系是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、已知⊙O1與⊙O2的圓心距是9cm,它們的半徑分別為3cm和6cm,則這兩圓的位置關系是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1與⊙O2的半徑分別為2cm和5cm,兩圓的圓心距O1O2=5cm,則兩圓的位置關系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知⊙O1與⊙O2的半徑分別為r1,r2,⊙O2經過⊙O1的圓心O1,且兩圓相交于A,B兩點,C為⊙O2上的點,連接AC交⊙O1于D點,再連接BC,BD,AO1,AO2,O1O2,有如下四個結論:①∠BDC=∠AO1O2;②
BD
BC
=
r1
r2
;③AD=DC; ④BC=DC.其中正確結論的序號為
 

查看答案和解析>>

同步練習冊答案