6.如圖,在△ABC中,∠C=90°,∠B=60°,AC=6,斜邊AB的垂直平分線交AB于點E,交AC于點D,則CD的長為2.

分析 連接DB,根據(jù)三角形內角和定理求出∠A,根據(jù)線段的垂直平分線的性質得到DA=DB,求出∠CBD=30°,根據(jù)直角三角形的性質計算即可.

解答 解:連接DB,
∵∠C=90°,∠B=60°,
∴∠A=30°,
∵DE是AB的垂直平分線,
∴DA=DB,
∴∠DBA=∠A=30°,
∴∠CBD=30°,
∴CD=$\frac{1}{2}$BD,即CD=$\frac{1}{2}$DA,又AC=6,
∴CD=2,
故答案為:2.

點評 本題考查的是線段的垂直平分線的性質,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

16.已知,如圖,點D在射線AB上,且AD=2,點P是射線AC上的一個動點,線段PD的垂直平分線與射線AC交于點E,與∠BAC的平分線交于點F.連結DF、PF、EF.
(1)當DF∥AC時,求證:AD=PF.
(2)當∠BAC=60°時,設AP=x,AF=y,求y關于x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

17.分式方程$\frac{x}{{x}^{2}-1}$+$\frac{2}{x-1}$=$\frac{2}{x+1}$的解為( 。
A.x=-1B.x=-4C.x=-2D.x=-3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

14.計算:$\sqrt{12}$+|-3|-2cos30°+(-1+$\sqrt{2}$)0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

1.如圖,△ABO關于x軸對稱,若點A的坐標為(a,b),則點B的坐標為(  )
A.(b,a)B.(-a,b)C.(a,-b)D.(-a,-b)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.如圖,直線PA∥QB,∠PAB與∠QBA的平分線交于點C,過點C作一條直線l與兩直線PA,QB分別相交于點D,E.
(1)如圖①,當直線l與PA垂直時,求證:AD+BE=AB;
(2)如圖②,當直線l與PA不垂直且交于點D,E都在AB同側時,CD中的結論是否成立?如果成立,請證明:如不成立,請說明理由.
(3)當直線l與PA不垂直且交于點D,E都在AB異側時,(1)中的結論是否仍然成立?如果成立,請證明; 如果不成立,請寫出AD,BE,AB之間的數(shù)量關系(不用證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

18.(1)計算:($\sqrt{2}$-$\sqrt{3}$)2+(2$\sqrt{3}$+$\sqrt{6}$)(2$\sqrt{3}$-$\sqrt{6}$)
(2)因式分解:9a2(x-y)+4b2(y-x)
(3)先化簡,再求值:$\frac{a-2}{{a}^{2}-1}$÷(a-1-$\frac{2a-1}{a+1}$),其中a2-a-6=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

15.已知點(-1,y1),(2,y2)都在直線y=$\frac{1}{2}$x+b上,則y1,y2大小關系是( 。
A.y1>y2B.y1=y2C.y1<y2D.不能比較

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

16.在-4,0,2.5,|-3|這四個數(shù)中,最大的數(shù)是( 。
A.-4B.0C.2.5D.|-3|

查看答案和解析>>

同步練習冊答案