如圖,已知點(diǎn)E是矩形ABCD的邊CB延長(zhǎng)線(xiàn)上一點(diǎn),且CE=CA,連接AE,過(guò)點(diǎn)C作CF⊥AE,垂足為點(diǎn)F,連接BF、FD.
(1)求證:△FBC≌△FAD;
(2)連接BD,若cos∠FBD=數(shù)學(xué)公式,且BD=10,求FC的值.

(1)證明:∵CE=AC,CF⊥AE,
∴AF=EF,
∴在Rt△ABE中,BF=AF,
∴∠FBA=∠FAB,
∵四邊形ABCD是矩形,
∴AD=BC,∠ABC=∠BAD=90°,
∴∠FBA+∠ABC=∠FAB+∠BAD,
即∠FAD=∠FBC,
在△FBC和△FAD中,
,
∴△FBC≌△FAD(SAS);

(2)解:∵△FBC≌△FAD,
∴FC=FD,∠BFC=∠AFD,
∴∠BFD=∠BFC+∠CFD=∠AFD+∠CFD=90°,
∵cos∠FBD==,BD=10,
∴FB=×10=6,
∴FD===8,
∴FC=8.
分析:(1)根據(jù)等腰三角形三線(xiàn)合一的性質(zhì)可得AF=EF,再根據(jù)直角三角形斜邊上的中線(xiàn)等于斜邊的一半可得BF=AF,然后利用等邊對(duì)等角的性質(zhì)得到∠FBA=∠FAB,從而推出∠FAD=∠FBC,再根據(jù)矩形的對(duì)邊相等可得AD=BC,然后利用“邊角邊”即可證明;
(2)根據(jù)(1),利用全等三角形對(duì)應(yīng)邊相等可得FC=FD,全等三角形對(duì)應(yīng)角相等可得∠BFC=∠AFD,然后證明∠BFD=90°,再根據(jù)余弦=求出FB的長(zhǎng)度,然后利用勾股定理列式計(jì)算即可求出FD,從而得解.
點(diǎn)評(píng):本題考查了矩形的性質(zhì),全等三角形的判定,等腰三角形三線(xiàn)合一的性質(zhì),直角三角形斜邊上的中線(xiàn)等于斜邊的一半的性質(zhì),以及銳角三角函數(shù),綜合性較強(qiáng),但難度不大,求出∠FAD=∠FBC是證明三角形全等的關(guān)鍵,也是本題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)E是矩形ABCD的邊CB延長(zhǎng)線(xiàn)上一點(diǎn),且CE=CA,連接AE,過(guò)點(diǎn)C作CF⊥AE,垂足為點(diǎn)F,連接精英家教網(wǎng)BF、FD.
(1)求證:△FBC≌△FAD;
(2)連接BD,若
FB
BD
=
3
5
,且AC=10,求FC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)E是矩形ABCD的邊AB上一點(diǎn),且EF⊥AC,EG⊥BD,AB=4cm,AD=3cm,則EF+EG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)E是矩形ABCD的邊AB上一點(diǎn),BE:EA=5:3,EC=15
5
,把△BEC沿折痕EC向精英家教網(wǎng)上翻折,若點(diǎn)B恰好在AD上,設(shè)這個(gè)點(diǎn)為F.
(1)求AB、BC的長(zhǎng)度各是多少?
(2)若⊙O內(nèi)切于以F、E、B、C為頂點(diǎn)的四邊形,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)E是矩形ABCD的邊CB延長(zhǎng)線(xiàn)上一點(diǎn),且CE=CA,連接AE,過(guò)點(diǎn)C作CF⊥AE,垂足為點(diǎn)F,連接BF、FD.
(1)求證:△FBC≌△FAD;
(2)連接BD,若cos∠FBD=
35
,且BD=10,求FC的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案