18、正方體問題:求點A到點C'的最短路徑是哪一條.
分析:將正方體展開,得到矩形,其對角線即為最短路徑.
解答:解:將正方體展開得下圖:
AC即為最短路徑,AC過BB'中點D.
同理,將正方體按不同方式展開,可得不同路徑.
過BC中點、DC中點、DD'中點、A'D'中點均可.
點評:此題考查了平面展開--最短路徑問題,將圖按不同方式展開,可得到不同的路徑,要全面討論,不要漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

李老師在與同學(xué)進行“螞蟻怎樣爬最近”的課題研究時設(shè)計了以下三個問題,請你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長.
(1)如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;
(2)如圖2,正四棱柱的底面邊長為5cm,側(cè)棱長為6cm,一只螞蟻從正四棱柱底面上的點A沿著棱柱表面爬到C1處;
(3)如圖3,圓錐的母線長為4cm,圓錐的側(cè)面展開圖如圖4所示,且∠AOA1=120°,一只螞蟻欲從圓錐的底面上的點A出發(fā),沿圓錐側(cè)面爬行一周回到點A.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

李老師在與同學(xué)進行“螞蟻怎樣爬最近”的課題研究時設(shè)計了以下三個問題,請你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長.
精英家教網(wǎng)
(1)如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;
(2)如圖2,正四棱柱的底面邊長為5cm,側(cè)棱長為6cm,一只螞蟻從正四棱柱底面上的點A沿著棱柱表面爬到C1處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

研究課題:螞蟻怎樣爬最近?
研究方法:如圖1,正方體的棱長為5cm,一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處,要求該螞蟻需要爬行的最短路程的長,可將該正方體右側(cè)面展開,由勾股定理得最短路程的長為AC1=
AC2+CC12
=
102+52
=5
5
cm.這里,我們將空間兩點間最短路程問題轉(zhuǎn)化為平面內(nèi)兩點間距離最短問題.
研究實踐:(1)如圖2,正四棱柱的底面邊長為5cm,側(cè)棱長為6cm,一只螞蟻從正四棱柱底面上的點A沿著棱柱表面爬到C1處,螞蟻需要爬行的最短路程的長為
 

(2)如圖3,圓錐的母線長為4cm,圓錐的側(cè)面展開圖如圖4所示,且∠AOA1=120°,一只螞蟻欲從圓錐的底面上的點A出發(fā),沿圓錐側(cè)面爬行一周回到點A.求該螞蟻需要爬行的最短路程的長.
(3)如圖5,沒有上蓋的圓柱盒高為10cm,底面圓的周長為32cm,點A距離下底面3cm.一只位于圓柱盒外表面點A處的螞蟻想爬到盒內(nèi)表面對側(cè)中點B處.請求出螞蟻需要爬行的最短路程的長.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

李老師在與同學(xué)進行“螞蟻怎樣爬最近”的課題研究時設(shè)計了以下三個問題,請你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長.
(1)如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;
(2)如圖2,圓錐的母線長為4cm,底面半徑r=
43
cm,一只螞蟻欲從圓錐的底面上的點A出發(fā),沿圓錐側(cè)面爬行一周回到點A.
(3)如圖3,是一個沒有上蓋的圓柱形食品盒,一只螞蟻在盒外表面的A處,它想吃到盒內(nèi)表面對側(cè)中點B處的食物,已知盒高10cm,底面圓周長為32cm,A距下底面3cm.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

李老師在與同學(xué)進行“螞蟻怎樣爬最近”的課題研究時設(shè)計了以下三個問題,請你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長。

(1)如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;
(2)如圖2,圓錐的母線長為4cm,底面半徑r=cm,一只螞蟻欲從圓錐的底面上的點A出發(fā),沿圓錐側(cè)面爬行一周回到點A.
(3)如圖3,是一個沒有上蓋的圓柱形食品盒,一只螞蟻在盒外表面的A處,它想吃到
盒內(nèi)表面對側(cè)中點B處的食物,已知盒高10cm,底面圓周長為32cm,A距下底面3cm

查看答案和解析>>

同步練習(xí)冊答案