如圖為邊長(zhǎng)為1的小正方形組成的網(wǎng)格圖.
①請(qǐng)以線段AB為一邊,以格點(diǎn)為頂點(diǎn),畫等腰三角形△ABC;
②請(qǐng)畫出△ABC關(guān)于直線a對(duì)稱的圖形;(不要求寫作法)
③求△ABC的面積.
分析:①以B為頂點(diǎn),根據(jù)網(wǎng)格結(jié)構(gòu)作BC=AB,即可得解;
②根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于直線a的對(duì)稱點(diǎn)A′、B′、C′,然后順次連接即可;
③根據(jù)三角形的面積公式列式進(jìn)行計(jì)算即可得解.
解答:解:①如圖所示,等腰三角形△ABC即為所求作的三角形,

②如圖所示,△A′B′C′即為所求作的三角形;

③△ABC的面積=
1
2
×2×4=4.
點(diǎn)評(píng):本題考查了利用軸對(duì)稱變換作圖,是基礎(chǔ)題,熟練掌握網(wǎng)格結(jié)構(gòu)是解題的關(guān)鍵,本題答案不唯一,只要符合題意即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:第19章《相似形》中考題集(14):19.6 相似三角形的性質(zhì)(解析版) 題型:解答題

如圖,邊長(zhǎng)為1的正方形OABC的頂點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上.動(dòng)點(diǎn)D在線段BC上移動(dòng)(不與B,C重合),連接OD,過點(diǎn)D作DE⊥OD,交邊AB于點(diǎn)E,連接OE.記CD的長(zhǎng)為t.
(1)當(dāng)t=時(shí),求直線DE的函數(shù)表達(dá)式;
(2)如果記梯形COEB的面積為S,那么是否存在S的最大值?若存在,請(qǐng)求出這個(gè)最大值及此時(shí)t的值;若不存在,請(qǐng)說明理由;
(3)當(dāng)OD2+DE2的算術(shù)平方根取最小值時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《圖形的相似》中考題集(15):3.3 相似三角形的性質(zhì)和判定(解析版) 題型:解答題

如圖,邊長(zhǎng)為1的正方形OABC的頂點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上.動(dòng)點(diǎn)D在線段BC上移動(dòng)(不與B,C重合),連接OD,過點(diǎn)D作DE⊥OD,交邊AB于點(diǎn)E,連接OE.記CD的長(zhǎng)為t.
(1)當(dāng)t=時(shí),求直線DE的函數(shù)表達(dá)式;
(2)如果記梯形COEB的面積為S,那么是否存在S的最大值?若存在,請(qǐng)求出這個(gè)最大值及此時(shí)t的值;若不存在,請(qǐng)說明理由;
(3)當(dāng)OD2+DE2的算術(shù)平方根取最小值時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第4章《相似三角形》中考題集(13):4.3 兩個(gè)三角形相似的判定(解析版) 題型:解答題

如圖,邊長(zhǎng)為1的正方形OABC的頂點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上.動(dòng)點(diǎn)D在線段BC上移動(dòng)(不與B,C重合),連接OD,過點(diǎn)D作DE⊥OD,交邊AB于點(diǎn)E,連接OE.記CD的長(zhǎng)為t.
(1)當(dāng)t=時(shí),求直線DE的函數(shù)表達(dá)式;
(2)如果記梯形COEB的面積為S,那么是否存在S的最大值?若存在,請(qǐng)求出這個(gè)最大值及此時(shí)t的值;若不存在,請(qǐng)說明理由;
(3)當(dāng)OD2+DE2的算術(shù)平方根取最小值時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省蘇州市工業(yè)園區(qū)星灣學(xué)校中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,邊長(zhǎng)為1的正方形OABC的頂點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上.動(dòng)點(diǎn)D在線段BC上移動(dòng)(不與B,C重合),連接OD,過點(diǎn)D作DE⊥OD,交邊AB于點(diǎn)E,連接OE.記CD的長(zhǎng)為t.
(1)當(dāng)t=時(shí),求直線DE的函數(shù)表達(dá)式;
(2)如果記梯形COEB的面積為S,那么是否存在S的最大值?若存在,請(qǐng)求出這個(gè)最大值及此時(shí)t的值;若不存在,請(qǐng)說明理由;
(3)當(dāng)OD2+DE2的算術(shù)平方根取最小值時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省蘇州市中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

如圖,邊長(zhǎng)為1的正方形OABC的頂點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上.動(dòng)點(diǎn)D在線段BC上移動(dòng)(不與B,C重合),連接OD,過點(diǎn)D作DE⊥OD,交邊AB于點(diǎn)E,連接OE.記CD的長(zhǎng)為t.
(1)當(dāng)t=時(shí),求直線DE的函數(shù)表達(dá)式;
(2)如果記梯形COEB的面積為S,那么是否存在S的最大值?若存在,請(qǐng)求出這個(gè)最大值及此時(shí)t的值;若不存在,請(qǐng)說明理由;
(3)當(dāng)OD2+DE2的算術(shù)平方根取最小值時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案