27、如圖,△ABE和△ACF分別是以△ABC的AB、AC為邊的正三角形,CE、BF相交于O.
(1)求證:∠AEC=∠ABF;(2)求∠EOB的度數(shù).
分析:證明角相等,可利用全等先證明線段相等,進而得出角相等,求角度的大小,可利用角之間的轉化,把未知轉化為已知,進而可進行求解.
解答:證明:(1)∵△ABE和△ACF都是正三角形,
∴AB=AE,AC=AF,
又∠CAE=∠CAB+60°∠BAF=∠CAB+60°
∴∠CAE=∠BAF
∴△AEC≌△ABF,
∴∠AEC=∠ABF;

(2)∵∠AEC+∠BEC=60°,∠AEC=∠ABF,
∴∠BEC+∠ABF=60°.
∵∠EOF=∠BEC+∠ABF+∠EBA=60°+60°=120°,
∴∠EOB=180°-∠EOF=180°-120°=60°.
點評:本題考查了全等三角形的判定與性質及等邊三角形的性質;可圍繞結論尋找全等三角形,運用全等三角形的性質判定線段相等,證得∠CAE=∠BAF是正確解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC=150°,則∠θ的度數(shù)是
60
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC=150°,則∠θ的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABE和△BCD都是等邊三角形,且每個角是60°,那么線段AD與EC有何數(shù)量關系?請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABE和△ACD中,給出以下四個論斷:
(1)AD=AE;(2)AB=AC;(3)AM=AN;(4)AD⊥DC,AE⊥BE.
請你以其中三個論斷為已知,剩下的一個作為要證明的結論,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABE和△ACD有公共點A,∠BAC=∠DAE=90°,AB=AC,AE=AD,延長BE分別交AC、CD于點M、F.求證:
(1)△ABE≌△ACD;
(2)BF⊥CD.

查看答案和解析>>

同步練習冊答案