【題目】如圖,拋物線C1的圖象與x軸交A(3,0)B(1,0)兩點,與y軸交于點C(03)D為拋物線的頂點.

1)求拋物線C1的解析式;

2)將拋物線C1關(guān)于直線x1對稱后的拋物線記為C2,將拋物線C1關(guān)于點B對稱后的拋物線記為C3,點E為拋物線C3的頂點,在拋物線C2的對稱軸上是否存在點F,使得BEF為等腰三角形?若存在請求出點F的坐標(biāo),若不存在請說明理由.

【答案】1y=﹣x22x+3;(2)存在,當(dāng)點F(3,﹣4+2)(3,﹣42)(3,4)(3,﹣)時,使得BEF為等腰三角形

【解析】

1)將A、B、C三點代入一般式,即可求出解析式;

2)由折疊的性質(zhì)和旋轉(zhuǎn)的性質(zhì)可求拋物線C2解析式和拋物線C3解析式,可得點E坐標(biāo),由等腰三角形的性質(zhì)可求點F坐標(biāo).

解:(1)設(shè)解析式yax1)(x+3

C03)代入得 a=﹣1

∴拋物線C1的解析式為y=﹣x22x+3;

2)∵拋物線C1的解析式為y=﹣x22x+3;

∴拋物線C1的頂點為(﹣14

∵將拋物線C1關(guān)于直線x1對稱后的拋物線記為C2,將拋物線C1關(guān)于點B對稱后的拋物線記為C3,

∴拋物線C2解析式為:y=﹣(x32+4,拋物線C3解析式為:y=(x324

∵點E為拋物線C3的頂點,

∴點E3,﹣4),

BE= ,

∵點F拋物線C2的對稱軸上,

∴點F橫坐標(biāo)為3,

BEEF2,則點F坐標(biāo)為(3,﹣4+2)或(3,﹣42),

BEBF時,則點F與點E關(guān)于x軸對稱,

∴點F34),

BFEF時,則22+4EF2BF2

BFEF,

∴點F3,﹣),

綜上所述:當(dāng)點F為(3,﹣4+2)或(3,﹣42)或(3,4)或(3,﹣)時,使得BEF為等腰三角形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,放置的OAB1B1A1B2,B2A2B3,都是邊長為2的等邊三角形,邊AOY軸上,點B1B2、B3都在直線y=x上,則點A2019的坐標(biāo)為__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畢業(yè)典禮的開幕式上需要采購花店的鮮花.花店提供甲、乙兩種造型的花束數(shù)量若干,甲種花束由4枝紅花、1枝黃花和1枝紫花搭配而成,乙種花束由4枝黃花和2枝紫花搭配而成.已知每枝紅花、黃花和紫花的成本之比是3:2:1,甲、乙兩種造型的花束數(shù)量之比是29.甲、乙兩種花束成本價分別為每種造型的三種鮮花的成本之和,甲種花束的銷售利潤率是20%,乙種花束的銷售利潤率為10%,這次買賣,花店獲得的利潤率是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了互助、平等、感恩、和諧、進取主題班會活動,活動后,就活動的個主題進行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:

(1)這次調(diào)查的學(xué)生共有多少名?

(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出進取所對應(yīng)的圓心角的度數(shù).

(3)如果要在這個主題中任選兩個進行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在創(chuàng)客教育理念的指引下,國內(nèi)很多學(xué)校都紛紛建立創(chuàng)客實踐空及創(chuàng)客空間,致力于從小培養(yǎng)孩子的創(chuàng)新精神和創(chuàng)造能力,某校開設(shè)了“3D”打印、數(shù)學(xué)編程、智能機器人、陶藝制作四門創(chuàng)客課程記為A、B、C、D,為了解學(xué)生對這四門創(chuàng)客課程的喜愛情況,數(shù)學(xué)興趣小組對全校學(xué)生進行了隨機問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成兩幅均不完整的統(tǒng)計圖表:

請根據(jù)圖表中提供的信息回答下列問題

1)統(tǒng)計表中的a   ,b   

2陶藝制作對應(yīng)扇形的圓心角為   ;

3)學(xué)校為開設(shè)這四門課程,需要對參加“3D”打印課程每個人投資200元,預(yù)計A、B、C、D四門課程每人投資比為4365,求學(xué)校開設(shè)創(chuàng)客課程需為學(xué)生人均投資多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】5月的第二個周日是母親節(jié),丁丁精心地設(shè)計了一份手工禮物送給媽媽.為了盡快完成手工禮物,丁丁騎自行車到位于家正東方向的商店購買材料.丁丁離家5分鐘后自行車出現(xiàn)故障,丁丁立即打電話通知在家看報紙的爸爸帶上工具箱來幫忙維修(丁丁打電話和爸爸找工具箱的時間忽略不計),同時丁丁以原來一半的速度推著自行車繼續(xù)走向商店.爸爸接到電話后,立刻出發(fā)追趕丁丁,追上丁丁后,爸爸用2分鐘的時間修好了自行車,并立刻以原速到位于家正西方500米的公司上班(爸爸換電話的時間忽略不計),丁丁則以原來的騎車速度到達商店.在整個過程中,丁丁和爸爸保持勻速行駛.如圖是丁丁、爸爸的距離y(米)與丁丁的出發(fā)時間x(分鐘)之間的函數(shù)圖象,則爸爸到達公司時,丁丁距離商店_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個單位長度的半圓O1,O2,O3組成一條平滑的曲線.點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第15秒時,點P的坐標(biāo)是(  )

A.15,1B.15,﹣1C.30,1D.30,﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸為x=1,經(jīng)過點(-1,0),有下列結(jié)論:①abc0;②a+cb;③3a+c=0;④a+bmam+b)(其中m≠1)其中正確的結(jié)論有( 。

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,DF平分∠ADCAC于點H,GDH的中點.

1)如圖,若MAD的中點,ABAC,AC9,CF8,CG2,求GM

2)如圖,M為線段AB上一點,連接MF,滿足∠MCD=∠BCG,∠MFB=∠BAC.求證:MC2CG

查看答案和解析>>

同步練習(xí)冊答案