如圖,矩形ABCD中,AB=4,AD=3,以A為圓心,r為半徑作⊙A,使得點D在圓內(nèi),點C在圓外,則半徑r的取值范圍是______.
∵矩形ABCD中,AB=4,AD=3,
∴AC=5,
∵以A為圓心,r為半徑作⊙A,使得點D在圓內(nèi),點C在圓外,
∴半徑r的取值范圍是:3<r<5.
故答案為:3<r<5.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知BC為⊙O直徑,D是直徑BC上一動點(不與點B,O,C重合),過點D作直線AH⊥BC交⊙O于A,H兩點,F(xiàn)是⊙O上一點(不與點B,C重合),且
AB
=
AF
,直線BF交直線AH于點E.
(1)如圖(a),當點D在線段BO上時,試判斷AE與BE的大小關(guān)系,并證明你的結(jié)論;
(2)當點D在線段OC上,且OD>DC時,其它條件不變.
①請你在圖(b)中畫出符合要求的圖形,并參照圖(a)標記字母;
②判斷(1)中的結(jié)論是否還成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在⊙O中,弦AB=10,CD=8,弦AB和CD相交于點E,連接AD和BC.
(1)求證:△AED△CEB;
(2)當弦AB不動,弦CD移動時,是否存在一個位置使CE=ED?若存在,請求出BC:AD的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在△ABC中,CE,BD分別是AB,AC邊上的高,求證:B,C,D,E四點在同一個圓上.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知在△ABC中,∠C=90°,AC=4cm,AB=5cm,CD⊥AB于點D,以點C為圓心,3cm為半徑作⊙C,則點A在⊙C______,點B在⊙C______,點D在⊙C______.(填“上“內(nèi)”或“外”)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在矩形ABCD中,已知:AB=3,BC=4,⊙A的半徑為r,若B、D在⊙A內(nèi),C在⊙A外,則r的取值范圍是(  )
A.3<r<4B.3<r<5C.4<r<5D.r>4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,直線AB經(jīng)過⊙O的圓心,與⊙O相交于A、B兩點,點C在⊙O上,且∠AOC=30度.點E是直線AB上的一個動點(與點O不重合),直線EC交⊙O于D,則使DE=DO的點E共有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在梯形ABCD中,ABDC,AB>CD,K,M分別在AD,BC上,∠DAM=∠CBK.
求證:∠DMA=∠CKB.(第二屆袓沖之杯初中競賽)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知△ABC中,AB=AC,以AB為直徑作⊙O交BC于D,交AC于E,過D作DF⊥AC于F.
(1)求證:DF是⊙O的切線;
(2)連接DE,若AB=AC=13,BC=10,求△CDE的面積.

查看答案和解析>>

同步練習冊答案