【題目】在△ABC中,AB=AC= , BC=2,以AB為直徑的⊙O分別交AC、BC于點D、E。

(1)求證:E是BC的中點;
(2)連結DE,求證:△CDE∽△CBA;
(3)求△CDE的面積.

【答案】
(1)證明:連接AE,
∵AB為⊙O的直徑,
∴∠AED=90°,
即AE⊥BC,
又∵AB=AC,
∴E為BC中點.


(2)證明:四邊形是⊙O的內接四邊形,
∴∠BED+∠BAD=180°,
又∵∠BED+∠DEC=180°,
∴∠BAD=∠DEC,
又∵∠BCA=∠DCE,
∴△CDE∽△CBA.


(3)解:由(1)知E為BC中點,
∵BC=2,
∴CE=BE=BC=1,
由(2)知△CDE∽△CBA,
又∵AC=,
∴CE:CA=1:
=,
又由(1)知即AE⊥BC,
∴AE==2,
∴S△ABC=.BC.AE=×2×2=2,
∴S△CDE=S△ABC=×2=.

【解析】(1)連接AE,由圓周角定理得出∠AED=90°,又由等腰三角形的性質得出E為BC中點.
(2)由圓的內接四邊形和鄰補角定義得出∠BAD=∠DEC,又由∠BCA=∠DCE,根據相似三角形的判定:兩個對應角相等的三角形相似即可得證.
(3)由(1)知E為BC中點,結合已知得出CE=BE=BC=1,再結合勾股定理得出AE==2,又由(2)知△CDE∽△CBA,根據相似三角形的性質得出=,由S△ABC=.BC.AE=×2×2=2,得出S△CDE=S△ABC=×2=.
【考點精析】利用三角形的面積和等腰三角形的性質對題目進行判斷即可得到答案,需要熟知三角形的面積=1/2×底×高;等腰三角形的兩個底角相等(簡稱:等邊對等角).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:方程組的解x為非正數(shù),y為負數(shù).

(1)a的取值范圍;

(2)化簡|a3||a2|;

(3)a的取值范圍中,當a為何整數(shù)時,不等式2axx2a1的解為x1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點OEFBCAB于點E,交AC于點F,過點OODAC于點D,下列四個結論:①BE=EF-CF;②∠BOC=90°+A;③點O到△ABC各邊的距離相等;④設OD=mAE+AF=n,則SAEF=mn,其中正確的結論是______(填所有正確的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形網格中,小格的頂點叫做格點.三個頂點都在網格上的三角形叫做格點三角形.小華已在左邊的正方形網格中作出了格點△ABC.請你在右邊的兩個正方形網格中各畫出一個不同的格點三角形,使得三個網格中的格點三角形都相似(不包括全等).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列解題過程,然后解答后面兩個問題.

解方程:|x-3|=2

解:當x-3≥0時,原方程可化為x-3=2,解得x=5

x-30時,原方程可化為x-3=-2,解得x=1

所以原方程的解是x=5x=1

1)解方程:|3x-2|-4=0

2)解關于x的方程:|x-2|=b+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道:有一內角為直角的三角形叫做直角三角形.類似地,我們定義:有一內角為45°的三角形叫做半直角三角形.如圖,在平面直角坐標系中,O為原點,A(4,0),B(-4,0),D是y軸上的一個動點,∠ADC=90°(A、D、C按順時針方向排列), BC與經過A,B,D三點的⊙M交于點E,DE平分∠ADC,連結AE,BD.顯然△DCE,△DEF,△DAE是半直角三角形.

(1)求證:△ABC是半直角三角形;
(2)求證:∠DEC=∠DEA;
(3)若點D的坐標為(0,8),
①求AE的長;
②記BC與AD的交點為F,求ΔACF與ΔBCA的面積之比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題正確的是( )
A.方程x2-4x+2=0無實數(shù)根;
B.兩條對角線互相垂直且相等的四邊形是正方形
C.甲、乙、丙三人站成一排合影留念,則甲、乙二人相鄰的概率是
D.若 是反比例函數(shù),則k的值為2或-1。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù) ,自變量x與函數(shù)y的對應值如下表:

x

-5

-4

-3

-2

-1

0

y

4

0

-2

-2

0

4

下列說法正確的是( )
A.拋物線的開口向下
B.當x>-3時,y隨x的增大而增大
C.二次函數(shù)的最小值是-2
D.拋物線的對稱軸x=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】位于南岸區(qū)黃桷埡的文峰塔,有著“平安寶塔”之稱.某校數(shù)學社團對其高度 AB進行了測量.如圖,他們從塔底A的點B出發(fā),沿水平方向行走了13米,到達點C,然后沿斜坡CD繼續(xù)前進到達點D處,已知DC=BC.在點D處用測角儀測得塔頂A的仰角為42°(點A,B,C,D,E在同一平面內).其中測角儀及其支架DE高度約為0.5米,斜坡CD的坡度(或坡比)i=1:2.4,那么文峰塔的高度AB約為( )(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

A.22.5 米
B.24.0 米
C.28.0 米
D.33.3 米

查看答案和解析>>

同步練習冊答案