分析 取BC中點(diǎn)G,延長AG到H使得AG=GH,連接BH,DH,延長HD交AB于K,先證明:BH=AC,DH=AE,再根據(jù)BH+BK>KD+DH和AK+KD>AD,得到BH+BK+AK+KD>KD+DH+AD即BH+AB>DH+AD得到證明.
解答 證明:取BC中點(diǎn)G,延長AG到H使得AG=GH,連接BH,DH,延長HD交AB于K.
在△HBG和△GCA中,
$\left\{\begin{array}{l}{AG=GH}\\{∠AGC=∠BGH}\\{CG=BG}\end{array}\right.$,
∴△BGH≌△CGA,
∴AC=BH,同理可得DH=AE,
∵BH+BK>KH即BH+BK>KD+DH,
又∵AK+KD>AD,
∴BH+BK+AK+KD>KD+DH+AD,
∴BH+AB>DH+AD,
∵AC=BH,AE-DH,
∴AB+AC>AD+AE.
點(diǎn)評 本題考查三邊關(guān)系定理、全等三角形的判定和性質(zhì),作三角形中線,把中線延長一倍是常用的輔助線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{a}{4}$ | B. | $\frac{1}{2}{x}^{2}$ | C. | $\frac{x}{π}$ | D. | $\frac{1}{a}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com