(2004•青海)一男生在校運會的比賽中推鉛球,鉛球的行進高度y(m)與水平距離x(m)之間的關(guān)系用如圖所示的二次函數(shù)圖象表示.(鉛球從A點被推出,實線部分表示鉛球所經(jīng)過的路線)
(1)由已知圖象上的三點,求y與x之間的函數(shù)關(guān)系式;
(2)求出鉛球被推出的距離;
(3)若鉛球到達的最大高度的位置為點B,落地點為C,求四邊形OABC的面積.

【答案】分析:(1)由已知圖象上的三點坐標,設(shè)一般式y(tǒng)=ax2+bx+c,列方程組,求解析式;
(2)求OC長,令y=0,求x的值;
(3)求面積要抓住A、B、C三點坐標,把四邊形分割成一個直角梯形和一個直角三角形,求面積和.
解答:解:(1)設(shè)y與x之函數(shù)關(guān)系式為y=ax2+bx+c
由圖象得,圖象經(jīng)過(-2,0),(0,),(2,)三點,則:

解得:a=-,b=,c=
∴y與x之間的函數(shù)關(guān)系式為y=-x2+x+;

(2)令y=0,則-x2+x+=0
解得:x1=10,x2=-2(不合題意,舍去)
∴鉛球被推出的距離是10米;

(3)過B作BD⊥OC于D
∵y=-(x2-8x-20))=-(x-4)2+3
∴B點坐標(4,3)
由(2)得C點坐標是(10,0)
∴S四邊形OABC=S梯形OABD+S△BDC=×(+3)×4+×6×3=18
答:四邊形OABC的面積為18
點評:題考查點的坐標的求法及二次函數(shù)的實際應(yīng)用.此題為數(shù)學建模題,借助二次函數(shù)解決實際問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2004•青海)一男生在校運會的比賽中推鉛球,鉛球的行進高度y(m)與水平距離x(m)之間的關(guān)系用如圖所示的二次函數(shù)圖象表示.(鉛球從A點被推出,實線部分表示鉛球所經(jīng)過的路線)
(1)由已知圖象上的三點,求y與x之間的函數(shù)關(guān)系式;
(2)求出鉛球被推出的距離;
(3)若鉛球到達的最大高度的位置為點B,落地點為C,求四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(06)(解析版) 題型:解答題

(2004•青海)如圖,西寧市風景區(qū)有2個景點A、B,為了方便游客,風景管理處決定在相距2千米的A、B兩景點之間修一筆直公路(即圖中的線段AB),經(jīng)測量,在A點的北偏東60°方向、B點的西偏北45°方向的C處有一個半徑為0.7千米的小水潭,問小水潭會不會影響公路的修筑,為什么?(參考數(shù)據(jù):≈1.732,≈1.414)

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《四邊形》(05)(解析版) 題型:填空題

(2004•青海)如圖,把一張平行四邊形紙片ABDC沿BC對折,使點D落在E處,BE與AC相交于點O,若∠DBC=15°,則∠BOC=    度.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年青海省中考數(shù)學試卷(解析版) 題型:填空題

(2004•青海)如圖,把一張平行四邊形紙片ABDC沿BC對折,使點D落在E處,BE與AC相交于點O,若∠DBC=15°,則∠BOC=    度.

查看答案和解析>>

同步練習冊答案