如圖①, 已知拋物線(xiàn)(a≠0)與軸交于點(diǎn)A(1,0)和點(diǎn)B (-3,0),與y軸交于點(diǎn)C. (1) 求拋物線(xiàn)的解析式;

(2) 設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸與軸交于點(diǎn)N ,問(wèn)在對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△CNP為等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3) 如圖②,若點(diǎn)E為第三象限拋物線(xiàn)上一動(dòng)點(diǎn),連接BE、CE,求四邊形BOCE面積的最大值,并求此時(shí)E點(diǎn)的坐標(biāo).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

(1) y=x+2x-3                             ………………………………4分

(2)P(-1,),P(-1,- ),P(-1,-6),P(-1,-)     ……………………4分

注:每個(gè)1分

(3) S=×3×(-x-2x+3)+ ×3×(-x)

S=(x+)+

X= ,      S=                     ………………………………5分

E(,-)                             ………………………………1分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知拋物線(xiàn)的頂點(diǎn)為A(0,1),矩形CDEF的頂點(diǎn)C、F在拋物線(xiàn)上,點(diǎn)D、E在x軸上,CF交y軸于點(diǎn)B(0,2),且其面積為8:
(1)此拋物線(xiàn)的解析式;
(2)如圖2,若點(diǎn)P為所求拋物線(xiàn)上的一動(dòng)點(diǎn),試判斷以點(diǎn)P為圓心,PB為半徑的圓與x軸的位置關(guān)系,并說(shuō)明理由.
(3)如圖2,設(shè)點(diǎn)P在拋物線(xiàn)上且與點(diǎn)A不重合,直線(xiàn)PB與拋物線(xiàn)的另一個(gè)交點(diǎn)為Q,過(guò)點(diǎn)P、Q分別作x軸的垂線(xiàn),垂足分別為N、M,連接PO、QO.求證:△QMO∽△PNO.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知拋物線(xiàn)y=-x2+b x+c經(jīng)過(guò)點(diǎn)A(1,0),B(-3,0)兩點(diǎn),且與y軸交于點(diǎn)C.
(1)求b,c的值.
(2)在第二象限的拋物線(xiàn)上,是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若不存在,請(qǐng)說(shuō)明理由.
(3)如圖2,點(diǎn)E為線(xiàn)段BC上一個(gè)動(dòng)點(diǎn)(不與B,C重合),經(jīng)過(guò)B、E、O三點(diǎn)的圓與過(guò)點(diǎn)B且垂直于BC的直線(xiàn)交于點(diǎn)F,當(dāng)△OEF面積取得最小值時(shí),求點(diǎn)E坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南沙區(qū)一模)如圖1,已知拋物線(xiàn)y=
1
2
x2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB=2OA=4.
(1)求該拋物線(xiàn)的函數(shù)表達(dá)式;
(2)設(shè)P是(1)中拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),以P為圓心,R為半徑作⊙P,求當(dāng)⊙P與拋物線(xiàn)的對(duì)稱(chēng)軸l及x軸均相切時(shí)點(diǎn)P的坐標(biāo).
(3)動(dòng)點(diǎn)E從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)B出發(fā),以每秒
2
個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng),過(guò)點(diǎn)E作EG∥y軸,交AC于點(diǎn)G(如圖2).若E、F兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t.則當(dāng)t為何值時(shí),△EFG的面積是△ABC的面積的
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知拋物線(xiàn)y=ax2-2ax+b經(jīng)過(guò)梯形OABC的四個(gè)頂點(diǎn),若BC=10,梯形OABC的面積為18.
(1)求拋物線(xiàn)解析式;
(2)將圖1中梯形OABC的上下底邊所在的直線(xiàn)OA、CB以相同的速度同時(shí)向上平移,平移后的兩條直線(xiàn)分別交拋物線(xiàn)于點(diǎn)O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、B1的坐標(biāo)分別為(x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當(dāng)S=36時(shí)點(diǎn)A1的坐標(biāo);
(3)如圖3,設(shè)圖1中點(diǎn)D坐標(biāo)為(1,3),M為拋物線(xiàn)的頂點(diǎn),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著線(xiàn)段BC運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以與點(diǎn)P相同的速度沿著線(xiàn)段DM運(yùn)動(dòng).P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)M時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P、Q兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t,是否存在某一時(shí)刻t,使得直線(xiàn)PQ、直線(xiàn)AB、x軸圍成的三角形與直線(xiàn)PQ、直線(xiàn)AB、拋物線(xiàn)的對(duì)稱(chēng)軸圍成的三角形相似?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知拋物線(xiàn)的頂點(diǎn)為A(O,1),矩形CDEF的頂點(diǎn)C、F在拋物線(xiàn)上,D、E在x軸上,CF交y軸于點(diǎn)B(0,2),且其面積為8.
(1)求此拋物線(xiàn)的解析式;
(2)如圖2,若P點(diǎn)為拋物線(xiàn)上不同于A的一點(diǎn),連接PB并延長(zhǎng)交拋物線(xiàn)于點(diǎn)Q,過(guò)點(diǎn)P、Q分別作x軸的垂線(xiàn),垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案