已知二次函數(shù))的圖象如圖所示,對(duì)稱軸是直線,有下列結(jié)論:①;②;③;④.其中正確結(jié)論的個(gè)數(shù)是(   ).

A.1             B.2             C.3              D.4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


右圖是護(hù)士統(tǒng)計(jì)一位病人的體溫變化圖,這位病人中午12時(shí)的體溫約為              

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,大于的 AB的長(zhǎng)為半徑畫(huà)孤,兩弧相交于點(diǎn)M,N,作直線MN,交BC于點(diǎn)D,連接AD.若△ADC的周長(zhǎng)為10,AB=7,則△ABC的周長(zhǎng)為(  )。

 


A、7              B、14          C、17             D、20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖, 已知拋物線y軸相交于C,與x軸相交于A、B,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,-1)。

(1)求拋物線的解析式;

(2)點(diǎn)E是線段AC上一動(dòng)點(diǎn),過(guò)點(diǎn)E作DE⊥x軸于點(diǎn)D,連結(jié)DC,當(dāng)△DCE的面積最大時(shí),求點(diǎn)D的坐標(biāo);

(3)在直線BC上是否存在一點(diǎn)P,使△ACP為等腰三角形,若存在,求點(diǎn)P的坐標(biāo),若不存在,說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


下列說(shuō)法不正確的是(     ).

A.選舉中,人們通常最關(guān)心的數(shù)據(jù)是眾數(shù)

B.要了解一批煙花的燃放時(shí)間,應(yīng)采用抽樣調(diào)查的方法

C.若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定

D.某抽獎(jiǎng)活動(dòng)的中獎(jiǎng)率是,說(shuō)明參加該活動(dòng)次就有次會(huì)中獎(jiǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


一個(gè)圓錐的側(cè)面展開(kāi)圖是圓心角為120°、半徑為15cm的扇形,則圓錐的底面半徑

       cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


為了了解重慶一中初2014級(jí)學(xué)生的跳繩成績(jī),琳琳老師隨機(jī)調(diào)查了該年級(jí)開(kāi)學(xué)體育模擬考試中部分同學(xué)的跳繩成績(jī),并繪制成了如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息完成下列各題:

(1)被調(diào)查同學(xué)跳繩成績(jī)的中位數(shù)是         ,并補(bǔ)全上面的條形統(tǒng)計(jì)圖;

(2)如果我校初三年級(jí)共有學(xué)生2025人,估計(jì)跳繩成績(jī)能得18分的學(xué)生約有       人;

3)在成績(jī)?yōu)?9分的同學(xué)中有三人(兩男一女),20分的同學(xué)中有兩人(一男一女)共5位同學(xué)的雙跳水平很高,現(xiàn)準(zhǔn)備從他們中選出兩位同學(xué)給全年級(jí)同學(xué)作示范,請(qǐng)用樹(shù)狀圖或列表法求剛好抽得兩位男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


 一個(gè)圓錐的側(cè)面積是底面積的2倍.則圓錐側(cè)面展開(kāi)圖的扇形的圓心角是       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在平面直角坐標(biāo)系中,直線=分別與軸,軸相交于兩點(diǎn),點(diǎn)軸的負(fù)半軸上的一個(gè)動(dòng)點(diǎn),以為圓心,3為半徑作.

(1)連結(jié),若,試判斷軸的位置關(guān)系,并說(shuō)明理由;

(2)當(dāng)為何值時(shí),以與直線=的兩個(gè)交點(diǎn)和圓心為頂點(diǎn)的三角形是正三角形?

 



查看答案和解析>>

同步練習(xí)冊(cè)答案