【題目】密蘇里州圣路易斯拱門是座雄偉壯觀的拋物線形的建筑物,是美國(guó)最高的獨(dú)自挺立的紀(jì)念碑,如圖.拱門的地面寬度為200米,兩側(cè)距地面高150米處各有一個(gè)觀光窗,兩窗的水平距離為100米,求拱門的最大高度.

【答案】解:如圖所示建立平面直角坐標(biāo)系,此時(shí),拋物線與x軸的交點(diǎn)為C(﹣100,0),D,

設(shè)這條拋物線的解析式為y=a(x﹣100)(x+100),

∵拋物線經(jīng)過(guò)點(diǎn)B(50,150),可得 150=a(50﹣100)(50+100).

解得 ,∴

即得到拋物線的解析式為

頂點(diǎn)坐標(biāo)是(0,200)

∴拱門的最大高度為200米.


【解析】根據(jù)圖形數(shù)值和拋物線與x軸的交點(diǎn)為C、D,拋物線經(jīng)過(guò)點(diǎn)B,求出拋物線的解析式,頂點(diǎn)坐標(biāo),求出拱門的最大高度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為1的小正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,

(1)B點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)坐標(biāo)為;
(2)將△ABC向右平移3個(gè)單位長(zhǎng)度得到△A1B1C1 , 請(qǐng)畫出△A1B1C1;
(3)在(2)的條件下,A1的坐標(biāo)為;
(4)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn)

(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使kx+b< 成立的x的取值范圍;
(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方形ABCD中,E是BC的中點(diǎn),F(xiàn)是CD上的一點(diǎn),AE⊥EF,下列結(jié)論:①∠BAE=30°;②CE2=AB CF;③CF= FD; ④△ABE∽△AEF.其中正確的有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,B兩座城市相距100千米,現(xiàn)計(jì)劃在兩城市間修筑一條高速公路(即線段AB).經(jīng)測(cè)量,森林保護(hù)區(qū)中心P點(diǎn)既在A城市的北偏東30°的方向上,又在B城市的南偏東45°的方向上.已知森林保護(hù)區(qū)的范圍是以P為圓心,35千米為半徑的圓形區(qū)域內(nèi).請(qǐng)問(wèn):計(jì)劃修筑的這條高速公路會(huì)不會(huì)穿越森林保護(hù)區(qū)?請(qǐng)通過(guò)計(jì)算說(shuō)明.(參考數(shù)據(jù): ≈1.732, ≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店用1000元購(gòu)進(jìn)一批套尺,很快銷售一空;商店又用1500元購(gòu)進(jìn)第二批同款套尺,購(gòu)進(jìn)單價(jià)比第一批貴25%,所購(gòu)數(shù)量比第一批多100套.

(1)求第一批套尺購(gòu)進(jìn)的單價(jià);

(2)若商店以每套4元的價(jià)格將這兩批套尺全部售出,可以盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是等邊三角形,點(diǎn)D是直線BC上一點(diǎn),以AD為一邊在AD的右側(cè)作等邊

如圖,點(diǎn)D在線段BC上移動(dòng)時(shí),直接寫出的大小關(guān)系;

如圖,點(diǎn)D在線段BC的延長(zhǎng)線上或反向延長(zhǎng)線上移動(dòng)時(shí),猜想的大小是否發(fā)生變化,若不變請(qǐng)直接寫出結(jié)論并選擇其中一種圖示進(jìn)行證明;若變化,請(qǐng)分別寫出圖、圖所對(duì)應(yīng)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD垂足為E.

(1)求證:△ABE∽△DBC;
(2)求線段AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】看圖填空:已知如圖,AD⊥BCD,EG⊥BCG,∠E=∠1,

求證:AD平分∠BAC.

證明:∵AD⊥BCD,EG⊥BCG( 已知

∴∠ADC=90°,∠EGC=90°___________

∴∠ADC=∠EGC(等量代換

∴AD∥EG_____________

∴∠1=∠2___________

∠E=∠3___________

∵∠E=∠1( 已知

∴∠2=∠3___________

∴AD平分∠BAC___________

查看答案和解析>>

同步練習(xí)冊(cè)答案