如圖在平面直角坐標(biāo)系xoy中,正方形OABC的邊長(zhǎng)為2厘米,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上.拋物線y=ax2+bx+c經(jīng)過點(diǎn)A,B和點(diǎn)D(4,
(1)求拋物線的解析式;
(2)如果點(diǎn)P由點(diǎn)A開始沿AB邊以2厘米/秒的速度向點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由B點(diǎn)開始沿BC邊以1厘米/秒的速度向點(diǎn)C移動(dòng).若P、Q中有一點(diǎn)到達(dá)終點(diǎn),則另一點(diǎn)也停止運(yùn)動(dòng),設(shè)P、Q兩點(diǎn)移動(dòng)的時(shí)間為t秒,S=PQ2(厘米2)寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍,當(dāng)t為何值時(shí),S最小;
(3)當(dāng)s取最小值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出點(diǎn)R的坐標(biāo);如果不存在,請(qǐng)說明理由.
(4)在拋物線的對(duì)稱軸上求出點(diǎn)M,使得M到D,A距離之差最大?寫出點(diǎn)M的坐標(biāo).

【答案】分析:(1)首先根據(jù)題意確定A、B、C、D點(diǎn)的坐標(biāo)值,因?yàn)閽佄锞y=ax2+bx+c經(jīng)過點(diǎn)A,B和點(diǎn) D(4,).將A、B、D點(diǎn)的坐標(biāo)值代入拋物線聯(lián)立解得a、b、c的值.
(2)首先根據(jù)題意確定P、Q點(diǎn)的坐標(biāo),再根據(jù)兩點(diǎn)間的距離公式求得PQ2用t表示的代數(shù)式,并得到t的取值范圍.將PQ2的利用配方法求得PQ2取最小值時(shí)的t的取值.
(3)由(2)中得到t的取值,確定出P、Q點(diǎn)的坐標(biāo)值.分別就①若以BQ為對(duì)角線,②若PB為對(duì)角線兩種情況.
根據(jù)平行四邊形的P、Q、B三點(diǎn)求得R點(diǎn)的坐標(biāo)值.并驗(yàn)證是否在拋物線上.
(4)首先根據(jù)題意確定對(duì)稱軸為x=1、及A、D點(diǎn)的坐標(biāo)值.因?yàn)锳、D兩點(diǎn)位于對(duì)稱軸x=1的兩邊,故作D點(diǎn)關(guān)于x=1的對(duì)稱點(diǎn)D',連接AD′,直線AD′與直線x=1的交點(diǎn)即為所求之.
解答:解:(1)由題意得A(0,-2)、B(2,-2)、C(2,0),
∵拋物線y=ax2+bx+c經(jīng)過點(diǎn)A,B和點(diǎn) D(4,),
,
解得c=-2、a=、b=,
∴拋物線的解析式為y=

(2)由題意知P點(diǎn)的坐標(biāo)為(2t,-2)、Q點(diǎn)的坐標(biāo)為(2,t-2),
則PQ2=(2t-2)2+(-2-t+2)2=5t2-8t+4=5(t-2+
∴S=PQ2=5t2-8t+4(0≤t≤1),
當(dāng)t=時(shí),S最。

(3)由(1)(2)知,P(,-2)、Q(2,-)、B(2,-2),
①若以BQ為對(duì)角線,
∵平行四邊形對(duì)角線的交點(diǎn)平分兩對(duì)角線.
∴R點(diǎn)的坐標(biāo)為,
t=時(shí),R,
在y=中,
當(dāng)x=時(shí),y=
∴R在拋物線上.
②若PB為對(duì)角線,當(dāng)t=時(shí),,
在y=中,當(dāng)x=時(shí),
y=
不在拋物線上,
綜上可知,拋物線上存在使以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形.

(4)由(1)知,該拋物線的對(duì)稱軸為x=1,
∵D、A點(diǎn)位于對(duì)稱軸x=1的兩側(cè),
故作D點(diǎn)關(guān)于x=1的對(duì)稱點(diǎn)D′(-2,
則直線AD′的解析式為y=
即y=-x-2
當(dāng)x=1時(shí),y=
∴M(1,).
點(diǎn)評(píng):本題主要考查了二次函數(shù)解析式的確定、函數(shù)圖象交點(diǎn)的求法、動(dòng)點(diǎn)問題、兩點(diǎn)間的距離公式、點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)等知識(shí)點(diǎn).主要考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖在平面直角坐標(biāo)系中,△AOB的頂點(diǎn)分別為A(2,0),O(0,0),B(0,4).
①△AOC與△AOB關(guān)于x軸成軸對(duì)稱,則C點(diǎn)坐標(biāo)為
(0,-4)

②將△AOB繞AB的中點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得△EGF,則點(diǎn)A的對(duì)應(yīng)點(diǎn)E的坐標(biāo)為
(3,3)
;
③在圖中畫出△AOC和△EGF,△AOB與△EGF重疊的面積為
1
平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(2,0),以點(diǎn)A為圓心,2為半徑的圓與x軸交于O,B兩點(diǎn),C為⊙A上一點(diǎn),P是x軸上的一點(diǎn),連接CP,將⊙A向上平移1個(gè)單位長(zhǎng)度,⊙A與x軸交于M、N,與y軸相切于點(diǎn)G,且CP與⊙A相切于點(diǎn)C,∠CAP=60°.請(qǐng)你求出平移后MN和PO的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(-1,0),如圖所示點(diǎn)B在拋物線y=ax2+ax-2上.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)將三角板ABC繞頂點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°到達(dá)△AB′C′的位置,請(qǐng)寫出點(diǎn)B′坐標(biāo)
(1,-1)
(1,-1)
,點(diǎn)C′坐標(biāo)
(2,1)
(2,1)
;判斷點(diǎn)B′
,C′
(填“在”或“不”)在(2)中的拋物線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在平面直角坐標(biāo)系中,M為x軸上一點(diǎn),⊙M交x軸于A、B兩點(diǎn),交y軸于C、D兩點(diǎn),P為
BC
上的一個(gè)動(dòng)點(diǎn),CQ平分∠PCD交AP于Q,A(-1,0),M(1,0).
(1)求C點(diǎn)坐標(biāo);
(2)當(dāng)點(diǎn)P在
BC
上運(yùn)動(dòng)時(shí),線段AQ的長(zhǎng)是否改變?若不變,請(qǐng)求出其長(zhǎng)度;若改變,請(qǐng)說明理由.(提示:連接AC).
(3)當(dāng)點(diǎn)P在
BC
上運(yùn)動(dòng)時(shí),是否存在這樣的點(diǎn)P,使CQ所在直線經(jīng)過點(diǎn)M?若存在請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(8,0),B點(diǎn)坐標(biāo)為(0,6)C是線段AB的中點(diǎn).請(qǐng)問在y軸上是否存在一點(diǎn)P,使得以P、B、C為頂點(diǎn)的三角形與△AOB相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案