(2010•豐臺(tái)區(qū)二模)已知:如圖,AB是半圓O的直徑,OD是半徑,BM切半圓于點(diǎn)B,OC與弦AD平行交BM于點(diǎn)C.
(1)求證:CD是半圓O的切線;
(2)若AB的長(zhǎng)為4,點(diǎn)D在半圓O上運(yùn)動(dòng),當(dāng)AD的長(zhǎng)為1時(shí),求點(diǎn)A到直線CD的距離.

【答案】分析:(1)由OC∥AD,得∠1=∠3,∠2=∠4,證得∠1=∠2,又OC公共,OD=OB,于是△ODC≌△OBC,則∠ODC=∠OBC,而BM切半圓于點(diǎn)B,得到∠OBC=90°,所以∠ODC=90°.
(2)過(guò)A作AE垂直CD,E為垂足,連BD,則∠ADB=90°,由∠EDA+∠3=∠4+∠ABD=90°,得到∠EDA=∠ABD,所以Rt△ADE∽R(shí)t△ABD,得到AD2=AE•AB,而AB=4,AD=1,即可得到AE.
解答:(1)證明:如圖,
∵OC∥AD,
∴∠1=∠3,∠2=∠4,
而OD=OA,∠3=∠4,
∴∠1=∠2.
又∵OD=OB,OC公共,
∴△ODC≌△OBC,
∴∠ODC=∠OBC,
∵BM切半圓于點(diǎn)B,得到∠OBC=90°,
∴∠ODC=90°,
∴CD是半圓O的切線;

(2)解:過(guò)A作AE垂直CD,E為垂足,連BD,則∠ADB=90°,
∴∠EDA+∠3=∠4+∠ABD=90°,
∴∠EDA=∠ABD,
∴Rt△ADE∽R(shí)t△ABD,
∴AD2=AE•AB,
而AB=4,AD=1,
∴1=4AE,得AE=
所以點(diǎn)A到直線CD的距離為
點(diǎn)評(píng):本題考查了圓的切線的判定方法.經(jīng)過(guò)半徑的外端點(diǎn)與半徑垂直的直線是圓的切線.當(dāng)已知直線過(guò)圓上一點(diǎn),要證明它是圓的切線,則要連接圓心和這個(gè)點(diǎn),證明這個(gè)連線與已知直線垂直即可;當(dāng)沒(méi)告訴直線過(guò)圓上一點(diǎn),要證明它是圓的切線,則要過(guò)圓心作直線的垂線,證明垂線段等于圓的半徑.同時(shí)考查了切線的性質(zhì)和三角形相似的判定和性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•豐臺(tái)區(qū)一模)已知二次函數(shù)y=x2-mx+m-2.
(1)求證:無(wú)論m為任何實(shí)數(shù),該二次函數(shù)的圖象與x軸都有兩個(gè)交點(diǎn);
(2)當(dāng)該二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(3,6)時(shí),求二次函數(shù)的解析式;
(3)將直線y=x向下平移2個(gè)單位長(zhǎng)度后與(2)中的拋物線交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),一個(gè)動(dòng)點(diǎn)P自A點(diǎn)出發(fā),先到達(dá)拋物線的對(duì)稱軸上的某點(diǎn)E,再到達(dá)x軸上的某點(diǎn)F,最后運(yùn)動(dòng)到點(diǎn)B.求使點(diǎn)P運(yùn)動(dòng)的總路徑最短的點(diǎn)E、點(diǎn)F的坐標(biāo),并求出這個(gè)最短總路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年北京市豐臺(tái)區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•豐臺(tái)區(qū)一模)已知二次函數(shù)y=x2-mx+m-2.
(1)求證:無(wú)論m為任何實(shí)數(shù),該二次函數(shù)的圖象與x軸都有兩個(gè)交點(diǎn);
(2)當(dāng)該二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(3,6)時(shí),求二次函數(shù)的解析式;
(3)將直線y=x向下平移2個(gè)單位長(zhǎng)度后與(2)中的拋物線交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),一個(gè)動(dòng)點(diǎn)P自A點(diǎn)出發(fā),先到達(dá)拋物線的對(duì)稱軸上的某點(diǎn)E,再到達(dá)x軸上的某點(diǎn)F,最后運(yùn)動(dòng)到點(diǎn)B.求使點(diǎn)P運(yùn)動(dòng)的總路徑最短的點(diǎn)E、點(diǎn)F的坐標(biāo),并求出這個(gè)最短總路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)模擬試卷(2)(解析版) 題型:選擇題

(2010•豐臺(tái)區(qū)二模)2010的相反數(shù)是( )
A.-2010
B.2010
C.
D.-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年福建省中考數(shù)學(xué)適應(yīng)性練習(xí)(解析版) 題型:選擇題

(2010•豐臺(tái)區(qū)二模)2010的相反數(shù)是( )
A.-2010
B.2010
C.
D.-

查看答案和解析>>

同步練習(xí)冊(cè)答案