【題目】已知一個二次函數(shù)圖象上部分點的橫坐標(biāo)與縱坐標(biāo)的對應(yīng)值如下表所示:
... | ... | ||||||
... | ... |
(1)求這個二次函數(shù)的表達式;
(2)在給定的平面直角坐標(biāo)系中畫出這個二次函數(shù)的圖象;
(3
【答案】(1)或;(2)畫圖見解析;(3).
【解析】
(1)利用表中數(shù)據(jù)和拋物線的對稱性可得到二次函數(shù)的頂點坐標(biāo)為(1,4),則可設(shè)頂點式y=a(x-1)2+4,然后把點(0,3)代入求出a即可;
(2)利用描點法畫二次函數(shù)圖象;
(3)根據(jù)x=、3時的函數(shù)值即可寫出y的取值范圍.
解:根據(jù)題意可知, 二次函數(shù)的頂點坐標(biāo)為(1,4),
∴設(shè)二次函數(shù)的解析式為:,
把代入得:;
∴;
∴解析式為:或.
(2)如圖所示:
(3)當(dāng)時,;
當(dāng)時,;
∵拋物線的對稱軸為:,
此時y有最大值4;
∴當(dāng)時,的取值范圍為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的點P和⊙C,給出如下定義:連接PC交⊙C于點N,若點P關(guān)于點N的對稱點Q在⊙C的內(nèi)部,則稱點P是⊙C的外稱點.
(1)當(dāng)⊙O的半徑為1時,
①在點D(﹣1,﹣1),E(2,0),F(0,4)中,⊙O的外稱點是 ;
②若點M(m,n)為⊙O的外稱點,且線段MO交⊙O于點G,求m的取值范圍;
(2)直線y=﹣x+b過點A(1,1),與x軸交于點B.⊙T的圓心為T(t,0),半徑為1.若線段AB上的所有點都是⊙T的外稱點,請直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)圖象的頂點為,其圖象與軸的交點、的橫坐標(biāo)分別為,.與軸負(fù)半軸交于點,在下面五個結(jié)論中:
①;②;③;④只有當(dāng)時,是等腰直角三角形;⑤使為等腰三角形的值可以有四個.
其中正確的結(jié)論有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時,x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時,y隨x增大而增大
其中結(jié)論正確的個數(shù)是( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點A(2,1).
(1)分別求出這兩個函數(shù)的解析式;
(2)當(dāng)x取什么范圍時,反比例函數(shù)值大于0;
(3)若一次函數(shù)與反比例函數(shù)另一交點為B,且縱坐標(biāo)為﹣4,當(dāng)x取什么范圍時,反比例函數(shù)值大于一次函數(shù)的值;
(4)試判斷點P(﹣1,5)關(guān)于x軸的對稱點P′是否在一次函數(shù)y=kx+m的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,以點為圓心、為半徑作圓,設(shè)點為⊙上一點,線段繞著點順時針旋轉(zhuǎn),得到線段,連接、.
(1)在圖中,補全圖形,并證明 .
(2)連接,若與⊙相切,則的度數(shù)為 .
(3)連接,則的最小值為 ;的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣2mx+m2﹣2與y軸交于點C.
(1)拋物線的頂點坐稱為 ,點C坐標(biāo)為 ;(用含m的代數(shù)式表示)
(2)當(dāng)m=1時,拋物線上有一動點P,設(shè)P點橫坐標(biāo)為n,且n>0.
①若點P到x軸的距離為2時,求點P的坐標(biāo);
②設(shè)拋物線在點C與點P之間部分(含點C和點P)最高點與最低點縱坐標(biāo)之差為h,求h與n之間的函數(shù)關(guān)系式,并寫出自變量n的取值范圍;
(3)若點A(﹣3,2)、B(2,2),連結(jié)AB,當(dāng)拋物線y=x2﹣2mx+m2﹣2與線段AB只有一個交點時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線中,函數(shù)值y與自變量之間的部分對應(yīng)關(guān)系如下表:
… | 0 | 1 | … | ||||
y | … | 0 | … |
(1)求該拋物線的表達式;
(2)如果將該拋物線平移,使它的頂點移到點M(2,4)的位置,那么其平移的方法是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩名同學(xué)做摸球游戲,他們把三個分別標(biāo)有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.
(1)求從袋中隨機摸出一球,標(biāo)號是1的概率;
(2)從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標(biāo)號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標(biāo)號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com