填空:
(1)方程(x+1)(x+2)(x+3)(x+4)=24的根為 .
(2)方程x3-3x+2=0的根為 .
(3)方程x4+2x3-18x2-10x+25=0的根為 .
(4)方程(x2+3x-4)2+(2x2-7x+6)2=(3x2-4x+2)2的根為 .
【答案】
分析:(1)把(x+2)(x+3)和(x+1)(x+4)分別結合在一起,得到x
2+5x+6和x
2+5x+4,設y=x
2+5x+4把方程降次,求出y的值,然后再求出x的值.(2)把方程化為(x
3-1)-3(x-1)=0,利用立方差公式和提公因式分解因式,求出方程的根.(3)把方程用因式分解得到(x+5)(x-1)(x
2-2x-5)=0,然后求出方程的根.(4)分析方程的結構,發(fā)現(x
2+3x-4)+(2x
2-7x+6)=3x
2-4x+2,所以有(x
2+3x-4)
2+(2x
2-7x+6)
2=[(x
2+3x-4)+(2x
2-7x+6)]
2,得到(x
2+3x-4)(2x
2-7x+6)=0,然后得到兩個一元二次方程,求出方程有四個根.
解答:解:(1)原方程化為:(x
2+5x+4)(x
2+5x+6)-24=0
設y=x
2+5x+4,得到:y
2+2y-24=0
(y+6)(y-4)=0
∴y
1=-6,y
2=4.
當y
1=-6時:x
2+5x+4=-6,
即:x
2+5x+10=0
△=25-40<0,方程無解.
當y
2=4時:x
2+5x+4=4.
x(x+5)=0,
∴x
1=0,x
2=-5.
(2)原方程化為:(x
3-1)-3(x-1)=0
(x-1)(x
2+x+1)-3(x-1)=0
(x-1)(x
2+x-2)=0
(x-1)(x+2)(x-1)=0
∴x
1=x
2=1,x
3=-2.
(3)x
4+2x
3-18x
2-10x+25=0
因式分解得:
(x+5)(x-1)(x
2-2x-5)=0
∴x
1=-5,x
2=1,
當x
2-2x-5=0時,得:x
3=1+
,x
4=1-
.
∴方程的解為:x
1=-5,x
2=1,x
3=1+
,x
4=1-
.
(4)(x
2+3x-4)
2+(2x
2-7x+6)
2=(3x
2-4x+2)
2=[(x
2+3x-4)+(2x
2-7x+6)]
2=(x
2+3x-4)
2+(2x
2-7x+6)
2+2(x
2+3x-4)(2x
2-7x+6)
∴2(x
2+3x-4)(2x
2-7x+6)=0
當x
2+3x-4=0
(x+4)(x-1)=0
∴x
1=-4,x
2=1.
當2x
2-7x+6=0
(2x-3)(x-2)=0
∴x
3=
,x
4=2.
∴方程的解為:x
1=-4,x
2=1,x
3=
,x
4=2.
故答案是:(1)x
1=0,x
2=-5.(2)x
1=x
2=1,x
3=-2.(3)x
1=-5,x
2=1,x
3=1+
,x
4=1-
.(4)x
1=-4,x
2=1,x
3=
,x
4=2.
點評:本題考查的是高次方程,(1)用換元法把方程降次,先求出y的值,然后再求出x的值.(2)用分組分解法因式分解求出方程的根.(3)先把方程分解求出x
1和x
2,然后再把剩下的項解一元二次方程求出方程的另外兩個根.(4)分析方程的結構特點,得到兩個一元二次方程,分別用因式分解法求出方程的根.