【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點(diǎn)P從點(diǎn)B出發(fā),沿對(duì)角線(xiàn)BD向點(diǎn)D勻速運(yùn)動(dòng),速度為4cm/s,過(guò)點(diǎn)P作PQ⊥BD交BC于點(diǎn)Q,以PQ為一邊作正方形PQMN,使得點(diǎn)N落在射線(xiàn)PD上,點(diǎn)O從點(diǎn)D出發(fā),沿DC向點(diǎn)C勻速運(yùn)動(dòng),速度為3cm/s,以O(shè)為圓心,0.8cm為半徑作⊙O,點(diǎn)P與點(diǎn)O同時(shí)出發(fā),設(shè)它們的運(yùn)動(dòng)時(shí)間為t(單 位:s)(0<t<)。
(1)如圖1,連接DQ平分∠BDC時(shí),t的值為 ;
(2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;
(3)請(qǐng)你繼續(xù)進(jìn)行探究,并解答下列問(wèn)題:
①證明:在運(yùn)動(dòng)過(guò)程中,點(diǎn)O始終在QM所在直線(xiàn)的左側(cè);
②如圖3,在運(yùn)動(dòng)過(guò)程中,當(dāng)QM與⊙O相切時(shí),求t的值;并判斷此時(shí)PM與⊙O是否也相切?說(shuō)明理由.
【答案】(1);(2);(3)①證明見(jiàn)解析,②t=,PM與⊙O不相切.
【解析】試題分析:本題考查圓綜合題、正方形的性質(zhì)、相似三角形的判定和性質(zhì)、切線(xiàn)的判定和性質(zhì)、勾股定理、角平分線(xiàn)的性質(zhì)等知識(shí),利用相似三角形的性質(zhì)構(gòu)建方程,最后一個(gè)問(wèn)題利用反證法證明解題.
(1)先利用△PBQ∽△CBD求出PQ、BQ,再根據(jù)角平分線(xiàn)性質(zhì),列出方程解決問(wèn)題.
(2)由△QTM∽△BCD,得列出方程即可解決.
(3)①如圖2中,由此QM交CD于E,求出DE、DO利用差值比較即可解決問(wèn)題.
②如圖3中,由①可知⊙O只有在左側(cè)與直線(xiàn)QM相切于點(diǎn)H,QM與CD交于點(diǎn)E.由△OHE∽△BCD,得,列出方程即可解決問(wèn)題.利用反證法證明直線(xiàn)PM不可能由⊙O相切.
(1)解:如圖1中,∵四邊形ABCD是矩形,
∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,
∴,
∵PQ⊥BD,
∴∠BPQ=90°=∠C,
∵∠PBQ=∠DBC,
∴△PBQ∽△CBD,
∴,
∴,
∴PQ=3t,BQ=5t,
∵DQ平分∠BDC,QP⊥DB,QC⊥DC,
∴QP=QC,
∴3t=8-5t,
∴t=1,
故答案為:1.
(2)解:如圖2中,作MT⊥BC于T.
∵M(jìn)C=MQ,MT⊥CQ,
∴TC=TQ,
由(1)可知TQ=(8-5t),QM=3t,
∵M(jìn)Q∥BD,
∴∠MQT=∠DBC,
∵∠MTQ=∠BCD=90°,
∴△QTM∽△BCD,
∴,
∴,
∴t=(s),
∴t=s時(shí),△CMQ是以CQ為底的等腰三角形.
(3)①證明:如圖2中,由此QM交CD于E,
∵EQ∥BD,
∴,
∴EC=(8-5t),ED=DC-EC=6-(8-5t)=t,
∵DO=3t,
∴DE-DO=t-3t=t>0,
∴點(diǎn)O在直線(xiàn)QM左側(cè).
②解:如圖3中,由①可知⊙O只有在左側(cè)與直線(xiàn)QM相切于點(diǎn)H,QM與CD交于點(diǎn)E.
∵EC=(8-5t),DO=3t,
∴OE=6-3t-(8-5t)=t,
∵OH⊥MQ,
∴∠OHE=90°,
∵∠HEO=∠CEQ,
∴∠HOE=∠CQE=∠CBD,
∵∠OHE=∠C=90°,
∴△OHE∽△BCD,
∴,
∴,
∴t=.
∴t=s時(shí),⊙O與直線(xiàn)QM相切.
連接PM,假設(shè)PM與⊙O相切,則∠OMH=PMQ=22.5°,
在MH上取一點(diǎn)F,使得MF=FO,則∠FMO=∠FOM=22.5°,
∴∠OFH=∠FOH=45°,
∴OH=FH=,FO=FM=,
∴MH=(+1),
由得到HE=,
由得到EQ=,
∴MH=MQ-HE-EQ=4--=,
∴(+1)≠,矛盾,
∴假設(shè)不成立.
∴直線(xiàn)PM與⊙O不相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】校園里栽下一棵小樹(shù)高1.8 米,以后每年長(zhǎng)0.3米,則n年后的樹(shù)高L米與年數(shù)n年之間的關(guān)系式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng) m=時(shí),多項(xiàng)式3x3﹣3mxy﹣3y2﹣9xy﹣8中不含xy項(xiàng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)0,2,﹣3,﹣1.2中,屬于負(fù)整數(shù)的是( )
A.0
B.2
C.﹣3
D.﹣1.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“低碳環(huán)保,你我同行”.今年合肥市區(qū)的增設(shè)的“小黃車(chē)”、“摩拜單車(chē)”等公共自行車(chē)
給市民出行帶來(lái)了極大的方便.圖①是某種公共自行車(chē)的實(shí)物圖,圖②是該種公共自行車(chē)的
車(chē)架示意圖,點(diǎn)A、D、C、E在同一條直線(xiàn)上,CD=30cm,DF=20cm,AF=25cm,F(xiàn)D⊥AE于點(diǎn)D,
座桿CE=15cm,且∠EAB=75°.求點(diǎn)E到AB的距離.(參考數(shù)據(jù):sin75°≈0.97,cos75°
≈0.26,tan75°≈3.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在直線(xiàn)跑道上同起點(diǎn)、同終點(diǎn)、同方向勻速跑步500 m,先到終點(diǎn)的人原地休息.已知甲先出發(fā)2 s.在跑步過(guò)程中,甲、乙兩人的距離y(單位:m)與乙出發(fā)的時(shí)間t(單位:s)之間的關(guān)系如圖所示,給出以下結(jié)論:①a=8;②b=92;③c=123.其中正確的是( )
A. ①② B. ②③
C. ①③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】油箱中有油20L,油從油箱中均勻流出,流速為0.2L/min,則油箱中剩余油量Q(L)與流出時(shí)間t(min)的關(guān)系式為_________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一架長(zhǎng)25米的梯子,斜靠在豎直的墻上,這時(shí)梯子底端離墻7米.
(1)此時(shí)梯子頂端離地面多少米?
(2)若梯子頂端下滑4米,那么梯子底端將向左滑動(dòng)多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com