分析 (1)先把A(-1,m)、B(n,-1)代入y=-$\frac{5}{x}$求出m、n的值,從而得到A(-1,5),B(5,-1),然后利用待定系數(shù)法求一次函數(shù)解析式;
(2)設(shè)直線y=-x+4與y軸的交點(diǎn)為C,則C(0,4),根據(jù)三角形面積公式,利用S△AOB=S△AOC+S△BOC進(jìn)行計(jì)算;
(3)觀察函數(shù)圖象,寫(xiě)出一次函數(shù)圖象在反比例函數(shù)圖象上方所對(duì)應(yīng)的自變量的取值范圍即可.
解答 解:(1)把A(-1,m)、B(n,-1)代入y=-$\frac{5}{x}$得-m=-5,-n=-5,解得m=5,n=4,
則A(-1,5),B(5,-1),
把A(-1,5),B(5,-1)代入y=kx+b得$\left\{\begin{array}{l}{-k+b=5}\\{5k+b=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=-1}\\{b=4}\end{array}\right.$,
所以一次函數(shù)解析式為y=-x+4;
(2)設(shè)直線y=-x+4與y軸的交點(diǎn)為C,則C(0,4),
所以S△AOB=S△AOC+S△BOC=$\frac{1}{2}$×4×1+$\frac{1}{2}$×4×5=12;
(3)x<-1或0<x<5.
點(diǎn)評(píng) 本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題:反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題(1)求反比例函數(shù)與一次函數(shù)的交點(diǎn)坐標(biāo),把兩個(gè)函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點(diǎn),方程組無(wú)解,則兩者無(wú)交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
x | 10 | 11 | 12 | 13 | 14 | … |
y | 200 | 180 | 160 | 140 | 120 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com