【題目】已知關(guān)于x的一元二次方程x2(2k1)x4k3=0,當(dāng)RtABC的斜邊a=,且兩直角邊bc恰好是這個(gè)方程的兩個(gè)根時(shí),求△ABC的周長(zhǎng).

【答案】+7

【解析】

先利用韋達(dá)定理得到bc的關(guān)系,再利用勾股定理構(gòu)造關(guān)于k的一元二次方程,根據(jù)b,c是三角形的兩條邊這一隱藏條件對(duì)k的值進(jìn)行排除,即可求出周長(zhǎng).

: b,cx2(2k1)x4k3=0的兩個(gè)根,b+c=2k+1,bc=4k-3,

RtABC,b2+c2=31,

(b+c)2-2bc=31,(2k+1)2-2(4k-3)=31,

整理,k2-k-6=0,解得k1=-2,k2=3,

當(dāng)k=-2時(shí),b+c=-3<0,舍去,

當(dāng)k=3時(shí),b+c=7,符合題意.

∴△ABC的周長(zhǎng)=+7

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,銳角三角形ABC的兩條高線BE、CD相交于點(diǎn)O,BECD

1)求證:BDCE;

2)判斷點(diǎn)O是否在∠BAC的平分線上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(﹣2,﹣2),B0,3),C3,3),D4,﹣2),y是關(guān)于x的二次函數(shù),拋物線y1經(jīng)過(guò)點(diǎn)A、B、C,拋物線y2經(jīng)過(guò)點(diǎn)BC、D,拋物線y3經(jīng)過(guò)點(diǎn)ABD,拋物線y4經(jīng)過(guò)點(diǎn)A、C、D.下列判斷:

四條拋物線的開(kāi)口方向均向下;

當(dāng)x0時(shí),至少有一條拋物線表達(dá)式中的y均隨x的增大而減小;

拋物線y1的頂點(diǎn)在拋物線y2頂點(diǎn)的上方;

拋物線y4y軸的交點(diǎn)在點(diǎn)B的上方.

所有正確結(jié)論的序號(hào)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0)的圖象經(jīng)過(guò)點(diǎn)A1,2).

1)當(dāng)b1,c=﹣4時(shí),求該二次函數(shù)的表達(dá)式;

2)已知點(diǎn)Mt1,5),Nt+1,5)在該二次函數(shù)的圖象上,請(qǐng)直接寫(xiě)出t的取值范圍;

3)當(dāng)a1時(shí),若該二次函數(shù)的圖象與直線y3x1交于點(diǎn)P,Q,將此拋物線在直線PQ下方的部分圖象記為C,

①試判斷此拋物線的頂點(diǎn)是否一定在圖象C上?若是,請(qǐng)證明;若不是,請(qǐng)舉反例;

②已知點(diǎn)P關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為P′,若P′在圖象C上,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于A,B兩點(diǎn),A點(diǎn)的坐標(biāo)為,B點(diǎn)的坐標(biāo)為,連接,過(guò)B軸,垂足為C

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)在射線上是否存在一點(diǎn)D,使得是直角三角形,求出所有可能的D點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形MNPQ放置在矩形ABCD中,使點(diǎn)M,N分別在AB,AD邊上滑動(dòng),若MN=6PN=4,在滑動(dòng)過(guò)程中,點(diǎn)A與點(diǎn)P的距離AP的最大值為( 。

A. 4 B. 2 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yx軸交于A,CAC的左側(cè)),點(diǎn)B在拋物線上,其橫坐標(biāo)為1,連接BC,BO,點(diǎn)FOB中點(diǎn).

1)求直線BC的函數(shù)表達(dá)式;

2)若點(diǎn)D為拋物線第四象限上的一個(gè)動(dòng)點(diǎn),連接BDCD,點(diǎn)Ex軸上一動(dòng)點(diǎn),當(dāng)BCD的面積的最大時(shí),求點(diǎn)D的坐標(biāo),及|FEDE|的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A在雙曲線y上,點(diǎn)B在雙曲線yk≠0)上,ABx軸,過(guò)點(diǎn)AADx軸于D.連接OB,與AD相交于點(diǎn)C,若AC=2CD,則k__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù))的圖象與反比例函數(shù)k≠0)的圖象交于第二、四象限內(nèi)的AB兩點(diǎn),與y軸交于C點(diǎn),過(guò)點(diǎn)AAHy軸,垂足為H,OH=3tanAOH=,點(diǎn)B的坐標(biāo)為(m,﹣2).求:

1)反比例函數(shù)和一次函數(shù)的解析式;

2)寫(xiě)出當(dāng)反比例函數(shù)的值大于一次函數(shù)的值時(shí)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案