【題目】兩條直線y=ax+b與y=bx+a在同一直角坐標(biāo)系中的圖象位置可能是( )
A.
B.
C.
D.

【答案】B
【解析】解:A、若經(jīng)過第一、二、三象限的直線為y=ax+b,則a>0,b>0,所以直線y=bx+a經(jīng)過第一、二、三象限,所以A選項錯誤;

B、若經(jīng)過第一、三、四象限的直線為y=ax+b,則a>0,b<0,所以直線y=bx+a經(jīng)過第一、二、四象限,所以B選項正確;

C、若經(jīng)過第一、二、三象限的直線為y=ax+b,則a>0,b>0,所以直線y=bx+a經(jīng)過第一、二、三象限,所以C選項錯誤;

D、若經(jīng)過第一、三、四象限的直線為y=ax+b,則a>0,b<0,所以直線y=bx+a經(jīng)過第一、二、四象限,所以D選項錯誤;

故選B.

【考點精析】利用一次函數(shù)的圖象和性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天的溫度上升﹣2℃的意義是(
A.上升了2℃
B.下降了﹣2℃
C.下降了2℃
D.沒有變化

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( )
A.a﹣(b﹣c)=a﹣b﹣c
B.a﹣(b﹣c)=a+b﹣c
C.a﹣(b﹣c)=a+b+c
D.a﹣(b﹣c)=a﹣b+c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201942527日,第二屆一帶一路國際合作高峰論壇在北京舉行,自一帶一路倡議提出以來,五年之間,北京市對外貿(mào)易總額累計約30000億美元,年均增速1.5%.將30000用科學(xué)記數(shù)法表示應(yīng)為( 。

A.3.0×103B.0.3×104C.3.0×104D.0.3×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y= x與雙曲線y= (k>0)相交于A、B兩點,且點A的橫坐標(biāo)為4.
(1)求k的值;
(2)若雙曲線y= (k>0)上一點C的縱坐標(biāo)為8,求△AOC的面積;
(3)根據(jù)圖象直接寫出:當(dāng)x取何值時,反比例函數(shù)的值大于一次函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點D、E分別在邊AB、AC上,且AD=AE,連接BECD,交于點F

(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說明理由;

(2)求證:過點AF的直線垂直平分線段BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCA'B'C'關(guān)于直線MN對稱,A'B'C'A″B″C″關(guān)于直線EF對稱.

(1)畫出直線EF;

(2)直線MNEF相交于點O,試探究∠BOB″與直線MN,EF所夾銳角∠α的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上原點和原點右邊的點所表示的數(shù)是( )

A.所有實數(shù)B.正實數(shù)C.非負(fù)實數(shù)D.負(fù)實數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中學(xué)生上學(xué)帶手機(jī)的現(xiàn)象越來越受到社會的關(guān)注,為此媒體記者隨機(jī)調(diào)查了某校若干名學(xué)生上學(xué)帶手機(jī)的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計圖(不完整),請根據(jù)圖中提供的信息,解答下列問題:

(1)此次抽樣調(diào)查中,共調(diào)查了   名學(xué)生;

(2)將圖1、圖2補(bǔ)充完整;

(3)現(xiàn)有4名學(xué)生,其中A類兩名,B類兩名,從中任選2名學(xué)生,求這兩名學(xué)生為同一類型的概率(用列表法或樹狀圖法).

查看答案和解析>>

同步練習(xí)冊答案