【題目】中,已知O上一點(diǎn),A點(diǎn).

(Ⅰ)如圖①,若的半徑為6,求線段的長;

(Ⅱ)如圖②,E點(diǎn),過E點(diǎn)作于點(diǎn)D,若,求的長.

【答案】I12;(Ⅱ)

【解析】

1)連接OA,根據(jù)等腰三角形的性質(zhì),分別得出∠B=C,B=BAO,再結(jié)合三角形的外角和內(nèi)角的關(guān)系,得出∠AOC與∠C的關(guān)系,根據(jù)切線的性質(zhì)可知△OAC為直角三角形,根據(jù)直角三角形中邊角關(guān)系即可求解.

2)連接,,由(I)可知,根據(jù)圓周角定理推論直徑所對的角是直角,可知,根據(jù)平行線的性質(zhì)得到,然后再直角△BED中根據(jù)邊角關(guān)系求出DE的長即可.

解:(I)如圖,連接.

的切線,點(diǎn)A為切點(diǎn),

.

∴∠OAC=90.

,

.

.

,

.

.

,

(Ⅱ)如圖,

連接,.

由(I)可知,

,

.

是直徑,

.

中,

.

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,正方形OABC如圖放置,反比例函數(shù)的圖像交AB于點(diǎn)D,交BC于點(diǎn)E,已知A,0),∠DOE=30°,則k的值為(

A.B.C.3D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線的頂點(diǎn)是A(13),將OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)后得到OB,點(diǎn)B恰好在拋物線上,OB與拋物線的對稱軸交于點(diǎn)C

1)求拋物線的解析式;

2P是線段AC上一動點(diǎn),且不與點(diǎn)A,C重合,過點(diǎn)P作平行于x軸的直線,與的邊分別交于MN兩點(diǎn),將以直線MN為對稱軸翻折,得到

設(shè)點(diǎn)P的縱坐標(biāo)為m

①當(dāng)內(nèi)部時(shí),求m的取值范圍;

②是否存在點(diǎn)P,使,若存在,求出滿足m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由邊長為的小正方形構(gòu)成的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).四邊形的頂點(diǎn)在格點(diǎn)上,點(diǎn)是邊邊上的一點(diǎn).請選擇適當(dāng)?shù)母顸c(diǎn),用無刻度的直尺在網(wǎng)格中完成下列畫圖,保留連線的痕跡,不要求說明理由.

1)①過邊于;

②過點(diǎn);

③在上作線段

2)在(1)的條件下,連,若邊上的動點(diǎn),在網(wǎng)格中求作一條線段等于的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形中,對角線,相交于O.點(diǎn).H為邊上的點(diǎn),過點(diǎn)H,交線段于點(diǎn)E,連接于點(diǎn)F,交于點(diǎn)G.若,則的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca≠0)的圖象與x軸交于A,B兩點(diǎn),點(diǎn)B位于(4,0)、(5,0)之間,與y軸交于點(diǎn)C,對稱軸為直線x2,直線y=﹣x+c與拋物線yax2+bx+c交于C,D兩點(diǎn),D點(diǎn)在x軸上方且橫坐標(biāo)小于5,則下列結(jié)論:①4a+b+c0;②ab+c0;③mam+b)<4a+2b(其中m為任意實(shí)數(shù));④a<﹣1,其中正確的是(

A.①②③④B.①②③C.①②④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+ca≠0)的對稱軸是,且經(jīng)過A(﹣40),C02)兩點(diǎn),直線ly=kx+tk≠0)經(jīng)過AC

1)求拋物線和直線l的解析式;

2)點(diǎn)P是直線AC上方的拋物線上一個(gè)動點(diǎn),過點(diǎn)PPDx軸于點(diǎn)D,交AC于點(diǎn)E,過點(diǎn)PPFAC,垂足為F,當(dāng)PEFAED時(shí),求出點(diǎn)P的坐標(biāo);

3)在拋物線的對稱軸上是否存在點(diǎn)Q,使ACQ為等腰三角形?若存在,直接寫出所有滿足條件的Q點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)社團(tuán)成員想利用所學(xué)的知識測量某廣告牌的寬度圖中線段MN的長,直線MN垂直于地面,垂足為點(diǎn)在地面A處測得點(diǎn)M的仰角為、點(diǎn)N的仰角為,在B處測得點(diǎn)M的仰角為米,且A、BP三點(diǎn)在一直線上請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.

參考數(shù)據(jù):,,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程

1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍;

2)當(dāng)k取滿足(1)中條件的最小整數(shù)時(shí),設(shè)方程的兩根為αβ,求代數(shù)式的值.

查看答案和解析>>

同步練習(xí)冊答案