如圖,已知AB∥CD,分別探究下面四個圖形中∠APC和∠PAB、∠PCD的關(guān)系,請從你所得四個關(guān)系中選出任意一個,說明你探究的結(jié)論的正確性.
作業(yè)寶
結(jié)論:(1)______;(2)______;(3)______;(4)______.

解:(1)連接AC,
∵AB∥CD,
∴∠BAC+∠DCA=180°,
∵在△APC中,∠APC+∠PAC+∠PCA=180°,
∴∠APC+∠PAC+∠PCA+∠BAC+∠DCA=360°,
即∠APC+∠PAB+∠PCD=360°,
故答案為:∠APC+∠PAB+∠PCD=360°;

(2)延長CP交AB于E,
∵AB∥CD,
∴∠DCP=∠AEP,
∵∠APC=∠BAP+∠AEP,
∴∠APC=∠BAP+∠DCP,
故答案為:∠APC=∠BAP+∠DCP;

(3)∵AB∥CD,
∴∠DCP=∠BEP,
∵∠BEP=∠BAP+∠APC,
∴∠DCP=∠BAP+∠APC,
故答案為:∠DCP=∠BAP+∠APC;

(4)∵AB∥CD,
∴∠BAP=∠AFD,
∵∠AFD=∠CFP,∠APC+∠DCP+∠CFP=180°,
∴∠APC+∠BAP+∠DCP=180°,
故答案為:∠APC+∠BAP+∠DCP=180°.
分析:(1)根據(jù)平行線性質(zhì)和三角形內(nèi)角和定理得出即可;
(2)根據(jù)平行線的性質(zhì)和三角形外角性質(zhì)得出即可;
(3)根據(jù)平行線的性質(zhì)和三角形外角性質(zhì)得出即可;
(4)根據(jù)平行線性質(zhì)和三角形內(nèi)角和定理得出即可.
點評:本題考查了平行線的性質(zhì),三角形內(nèi)角和定理,三角形外角性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知AB=CD且∠ABD=∠BDC,要證∠A=∠C,判定△ABD≌△CDB的方法是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,已知AB∥CD,∠A=38°,則∠1=
142°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB∥CD,∠1=50°25′,則∠2的大小是
129°35′
129°35′

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知 AB∥CD,∠A=53°,則∠1的度數(shù)是
127°
127°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB∥CD∥EF,那么下列結(jié)論中,正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案