【題目】在△ABC中,P為邊AB上一點.
(1)如圖l,若∠ACP=∠B,求證:AC2 =AP·AB;
(2)若M為CP的中點,AC=2,如圖2,若∠PBM=∠ACP,AB=3,求BP的長.
【答案】(1)證明見解析(2)
【解析】試題分析:
(1)由已知條件易證△ACP∽△ABC,由此可得AC:AB=AP:AC,即:AC2=AP·AB;
(2)過點C作CQ∥BM交AB延長線于Q,由平行線分線段成比例結合點M是PC的中點可得BP=BQ,設BP= ,則可得BQ = ,AP= ,AQ= ;再證△APC∽△ACQ可得AC2 =AP·AQ,即,解方程即可求得BP的長.
試題解析:
(1)∵∠ACP=∠B,∠BAC=∠CAP,
∴△ACP∽△ABC,
∴AC:AB=AP:AC,
∴AC2=AP·AB;
(2)如下圖,作CQ∥BM交AB延長線于Q,
又∵點M是PC的中點,
∴PB:BQ=PM:MC=1,
設BP= ,則BQ = ,
∵AB=3,
∴AP= ,AQ= ,
∵∠PBM=∠ACP,∠PAC= ∠CAQ,
∴△APC∽△ACQ,
∴AC:AQ=AP:AC,
∴AC2 =AP·AQ,即,
解得: (不合題意,舍去),
即BP的長為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(2,4),B(1,1),C(4,3).
(1)請畫出△ABC關于x軸對稱的△A1B1C1,并寫出點A1的坐標;
(2)請畫出△ABC繞點B逆時針旋轉90后的△A2BC2;
(3)求出(2)中C點旋轉到C2點所經過的路徑長(結果保留根號和π).
(4)在x軸上有一點P,PA+PB的值最小,請直接寫出點P的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+3與x軸交于A(﹣4,0)、B(﹣l,0)兩點,與y軸交于點C,點D是第三象限的拋物線上一動點.
(1)求拋物線的解析式;
(2)設點D的橫坐標為m,△ACD的面積為量求出S與m的函數(shù)關系式,并確定m為何值時S有最大值,最大值是多少?
(3)若點P是拋物線對稱軸上一點,是否存在點P使得∠APC=90°?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,分析下列四個結論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結論有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明解方程=3出現(xiàn)了錯誤,解答過程如下:
方程兩邊都乘以(x-2),得1-(1-x)=3(第一步)
去括號,得1-1+x=3(第二步)
移項,合并同類項,得x=3(第三步)
檢驗,當x=3時x-2≠0(第四步)
所以x=3是原方程的解.(第五步)
(1)小明解答過程是從第____步開始出錯的,原方程化為第一步的根據(jù)是_____.
(2)請寫出此題正確的解答過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,彈性小球從P(2,0)出發(fā),沿所示方向運動,每當小球碰到正方形OABC的邊時反彈,反彈時反射角等于入射角,當小球第一次碰到正方形的邊時的點為P1,第二次碰到正方形的邊時的點為P2…,第n次碰到正方形的邊時的點為Pn,則P2020的坐標是( 。
A.(5,3)B.(3,5)C.(0,2)D.(2,0)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com