【題目】如圖,已知ABCBC邊上的垂直平分線DEBAC得平分線交于點EEFABAB的延長線于點F,EGAC交于點G

求證:(1BF=CG;(2AF=AB+AC).

【答案】1)見詳解;(2)見詳解

【解析】

1)根據(jù)線段垂直平分線求出BE=CE,根據(jù)角平分線性質(zhì)求出EF=GE,即可RtBFERtCGE;
2)證明△AFE≌△AGE,推出AF=AG,即可得出答案.

證明:(1)連接BECE,


DEBC的垂直平分線,
BE=CE,
AE平分∠BACEFAB,EGAC,
∴∠BFE=EGC=90°,EF=EG,
RtBFERtCGE

RtBFERtCGEHL),
BF=CG

2)∵AE平分∠BAC,EFAB,EGAC,
∴∠AFE=AGE=90°,∠FAE=GAE
在△AFE和△AGE

∴△AFE≌△AGE,
AF=AG,
BF=CG
AB+AC=AF-BF+AG+CG
=AF+AF
=AF,
AF=AB+AC).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰ABC中,AB=AC,A=20°,AB上一點D,且AD=BC,過點DDEBCDE=AB,連接EC,則∠DCE的度數(shù)為(

A. 80° B. 70° C. 60° D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列問題,列出關(guān)于的方程,并將其化成一元二次方程的一般形式.

14個完全相同的正方形的面積之和是25,求正方形的邊長.

2)一個矩形的長比寬多2,面積是100,求矩形的長.

3)一個直角三角形的斜邊長為10,兩條直角邊相差2,求較長的直角邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)一種新型節(jié)能電水壺并加以銷售,現(xiàn)準備在甲城市和乙城市兩個不同地方按不同銷售方案進行銷售,以便開拓市場.

若只在甲城市銷售,銷售價格為(元/件)、月銷量為(件),的一次函數(shù),如表,

月銷量(件)

銷售價格(元/件)

成本為元/件,無論銷售多少,每月還需支出廣告費元,設(shè)月利潤為(元)

(利潤銷售額-成本-廣告費).

若只在乙城市銷售,銷售價格為元/件,受各種不確定因素影響,成本為元/件為常數(shù),,當月銷量為(件)時,每月還需繳納元的附加費,設(shè)月利潤為(元)(利潤銷售額-成本-附加費).

時,________元/件,________元;

分別求出,間的函數(shù)關(guān)系式(不必寫的取值范圍);

為何值時,在甲城市銷售的月利潤最大?若在乙城市銷售月利潤的最大值與在甲城市銷售月利潤的最大值相同,求的值;

如果某月要將件產(chǎn)品全部銷售完,請你通過分析幫公司決策,選擇在甲城市還是在乙城市銷售才能使所獲月利潤較大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2-12ax+36a-5的圖象在4<x<5這一段位于x軸下方,在8<x<9這一段位于x軸上方,則a的值為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A、B兩點,點A在點B左側(cè),點B的坐標為(1,0),C(0,-3)

(1) 求拋物線的解析式;

(2) 若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.

(3) 若點Ex軸上,點P在拋物線上,是否存在以A、CE、P為頂點且以AC為一邊的平行四邊形?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀:對于兩個不等的非零實數(shù)、,若分式的值為零,則.又因為,所以關(guān)于的方程有兩個解,分別為,.

應(yīng)用上面的結(jié)論解答下列問題:

(1)方程的兩個解分別為,,則_________,_________;

(2)方程的兩個解分別為,,求的值;

(3)關(guān)于的方程的兩個解分別為,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】許多數(shù)學題目都有多種解法,如題目:如圖,已知,∠MAN120°,AC平分∠MAN.∠ABC+∠ADC180°.求證:AB+ADAC

某班第二學習小組經(jīng)過討論,提出了三種添加輔助線的方法,請你選擇

其中一種方法,完成證明.

方法一:在AN上截取AEAC,連接CE

方法二:過點CCEAMAN于點E

方法三:過點C分別作CEAN于點E,CFAM于點F

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三角形紙片ABC中,ABAC,∠BAC120°,BC14cm,折疊紙片,使點C和點A重合,折痕與AC,BC交于點D和點E;則折痕DE的長為_____

查看答案和解析>>

同步練習冊答案