如圖,在正方形ABCD的邊BC上任取一點M,過點C作CN⊥DM交AB于N,設(shè)正方形對角線交點為O,試確定OM與ON之間的關(guān)系,并說明理由.

解:∵四邊形ABCD是正方形,
∴DC=BC,∠DCM=∠NBC=90°,
又∵CN⊥DM,
∴∠NCM+∠CMD=90°,
而∠CMD+∠CDM=90°,
∴∠NCM=∠CDM,
在△DCM和△CBN中,

∴△DCM≌△CBN(ASA),
∴CM=BN,
∵四邊形ABCD是正方形,
∴∠OCM=∠OBN=45°,CO=BO,
在△OCM和△OBN中,

∴△OCM≌△OBN(SAS).
∴OM=ON,∠COM=∠BON,而∠COM+∠MOB=90°,
∴∠BON+∠MOB=90°.
∴∠MON=90°,即OM⊥ON.
∴OM與ON之間的關(guān)系是OM=ON且OM⊥ON.
分析:此題的結(jié)論是OM=ON;OM⊥ON.可以利用已知條件證明.DCM≌△CBN得CM=BN,再推出△OCM≌△OBN得OM=ON.
點評:此題把正方形和全等三角形的知識結(jié)合起來,主要利用正方形的性質(zhì)與全等三角形的判定、性質(zhì)來解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網(wǎng),交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內(nèi)部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習(xí)冊答案