【題目】如圖,在邊長(zhǎng)為10cm的正方形ABCD中,P為AB邊上任意一點(diǎn)(P不與A、B兩點(diǎn)重合),連結(jié)DP,過點(diǎn)P作PE⊥DP,垂足為P,交BC于點(diǎn)E,則BE的最大長(zhǎng)度為cm.
【答案】
【解析】解:設(shè)AP=x,BE=y.
如圖,∵四邊形ABCD是正方形,
∴∠A=∠B=90°
∵PE⊥DP,
∴∠2+∠3=90°,∠1+∠2=90°
∴∠1=∠3,
∴△ADP∽△BPE,
∴ ,即 ,
∴y=﹣ x2+x=﹣ (x﹣5)2+ (0<x<10);
∴當(dāng)x=5時(shí),y有最大值 .
故答案是: .
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的最值的相關(guān)知識(shí),掌握如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a,以及對(duì)正方形的性質(zhì)的理解,了解正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】韋玲和覃靜兩人玩“剪刀、石頭、布”的游戲,游戲規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀.
(1)請(qǐng)用列表法或樹狀圖表示出所有可能出現(xiàn)的游戲結(jié)果;
(2)求韋玲勝出的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于D,過點(diǎn)D作DE⊥AD交AB于E,以AE為直徑作⊙O.
(1)求證:點(diǎn)D在⊙O上;
(2)求證:BC是⊙O的切線;
(3)若AC=6,BC=8,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市新城區(qū)環(huán)形路的拓寬改造工程項(xiàng)目,經(jīng)投標(biāo)決定由甲、乙兩個(gè)工程隊(duì)共同完成這一工程項(xiàng)目.已知乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的2倍;該工程如果由甲隊(duì)先做6天,剩下的工程再由甲、乙兩隊(duì)合作16天可以完成.求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需要多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB>BC,按以下步驟作圖:以A為圓心,小于AD的長(zhǎng)為半徑畫弧,分別交AB、CD于E、F;再分別以E、F為圓心,大于 EF的長(zhǎng)半徑畫弧,兩弧交于點(diǎn)G;作射線AG交CD于點(diǎn)H.則下列結(jié)論:①AG平分∠DAB,②CH= DH,③△ADH是等腰三角形,④S△ADH= S四邊形ABCH .
其中正確的有( )
A.①②③
B.①③④
C.②④
D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)區(qū)“美麗廣西 清潔鄉(xiāng)村”的號(hào)召,某校開展“美麗廣西 清潔校園”的活動(dòng),該校經(jīng)過精心設(shè)計(jì),計(jì)算出需要綠化的面積為498m2 , 綠化150m2后,為了更快的完成該項(xiàng)綠化工作,將每天的工作量提高為原來的1.2倍.結(jié)果一共用20天完成了該項(xiàng)綠化工作.
(1)該項(xiàng)綠化工作原計(jì)劃每天完成多少m2?,
(2)在綠化工作中有一塊面積為170m2的矩形場(chǎng)地,矩形的長(zhǎng)比寬的2倍少3m,請(qǐng)問這塊矩形場(chǎng)地的長(zhǎng)和寬各是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地植物園從正門到側(cè)門有一條小路,甲徒步從正門出發(fā)勻速走向側(cè)門,乙與甲同時(shí)出發(fā),騎自行車從側(cè)門勻速前往正門到達(dá)正門后休息0.2小時(shí),然后按原路原速勻速返回側(cè)門,圖中折線分別表示甲、乙到側(cè)門的距離y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系圖象,根據(jù)圖象信息解答下列問題:
(1)求甲到側(cè)門的距離y與x之間的函數(shù)關(guān)系式;
(2)求甲、乙第一次相遇時(shí)到側(cè)門的距離.
(3)求甲、乙第二次相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過原點(diǎn)的拋物線y=﹣x2+2mx(m>0)與x軸的另一個(gè)交點(diǎn)為A.過點(diǎn)P(1,m)作直線PM⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B.記點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C(B、C不重合).連接CB,CP.
(1)當(dāng)m=3時(shí),求點(diǎn)A的坐標(biāo)及BC的長(zhǎng);
(2)當(dāng)m>1時(shí),連接CA,問m為何值時(shí)CA⊥CP?
(3)過點(diǎn)P作PE⊥PC且PE=PC,問是否存在m,使得點(diǎn)E落在坐標(biāo)軸上?若存在,求出所有滿足要求的m的值,并定出相對(duì)應(yīng)的點(diǎn)E坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的中點(diǎn),∠BDE=∠CDF,請(qǐng)你添加一個(gè)條件,使DE=DF成立.你添加的條件是 .(不再添加輔助線和字母)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com