【題目】如圖是二次函數(shù)y=ax2+bx+c的部分圖像 ,在下列四個(gè)結(jié)論中正確的是
①不等式ax2+bx+c>0的解集是-1<x<5;②a-b+c>0;③b2-4ac>0;④4a+b<0.

【答案】①③.
【解析】∵圖象可得拋物線與x軸的另一個(gè)交點(diǎn)為(-1,0),

∴當(dāng)y>0時(shí),-1<x<5,故①正確;

當(dāng)x=-1時(shí),y=a-b+c=0,故②不符合題意;

∵拋物線與x軸的交點(diǎn)有兩個(gè),∴b2-4ac>0,故③正確;

∵拋物線的對(duì)稱(chēng)軸為直線x=2,∴- =2,4a+b=0,故④不符合題意.


【考點(diǎn)精析】本題主要考查了二次函數(shù)的圖象的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱(chēng)軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價(jià)200元,領(lǐng)帶每條定價(jià)40元。廠方在開(kāi)展促銷(xiāo)活動(dòng)期間,向客戶(hù)提供兩種優(yōu)惠方案:

買(mǎi)一套西裝送一條領(lǐng)帶;西裝和領(lǐng)帶都按定價(jià)的90%付款,F(xiàn)某客戶(hù)要到該服裝廠購(gòu)買(mǎi)西裝20套,領(lǐng)帶x條():

(1)若該客戶(hù)按方案購(gòu)買(mǎi),需付款______________元(用含x的代數(shù)式表示);若該客戶(hù)按方案購(gòu)買(mǎi),需付款________________用含x的代數(shù)式表示);

(2)若x=30,通過(guò)計(jì)算說(shuō)明此時(shí)按哪種方案購(gòu)買(mǎi)較為合算?

(3)當(dāng)x=30時(shí),你能給出一種更為省錢(qián)的購(gòu)買(mǎi)方案嗎?試寫(xiě)出你的購(gòu)買(mǎi)方法。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BC﹣CD﹣DA運(yùn)動(dòng)至點(diǎn)A停止,設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y.如果y關(guān)于x的函數(shù)圖象如圖2所示,則△ABC的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作ABDE,連接AD,EC.

(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題:

(1) ;

(2) (-2x2y+6x3y4-8xy)÷(-2xy);

(3)先化簡(jiǎn),再求值:,其中.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知矩形ABCD的寬AD=8,點(diǎn)E在邊AB上,P為線段DE上的一動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)D,E不重合),∠MPN=90°,M,N分別在直線AB,CD上,過(guò)點(diǎn)P作直線HK AB,作PF⊥AB,垂足為點(diǎn)F,過(guò)點(diǎn)N作NG⊥HK,垂足為點(diǎn)G

(1)求證:∠MPF=∠GPN
(2)在圖1中,將直角∠MPN繞點(diǎn)P順時(shí)針旋轉(zhuǎn),在這一過(guò)程中,試觀察、猜想:當(dāng)MF=NG時(shí),△MPN是什么特殊三角形?在圖2中用直尺畫(huà)出圖形,并證明你的猜想;

(3)在(2)的條件下,當(dāng)∠EDC=30°時(shí),設(shè)EP=x,△MPN的面積為S,求出S關(guān)于x的解析式,并說(shuō)明S是否存在最小值?若存在,求出此時(shí)x的值和△MPN面積的最小值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,如圖為邊長(zhǎng)為a的大正方形中有一個(gè)邊長(zhǎng)為b的小正方形,如圖是由如圖中陰影部分拼成的一個(gè)長(zhǎng)方形.

1)設(shè)如圖中陰影部分面積為S1,如圖中陰影部分面積為S2,請(qǐng)用含a、b的代數(shù)式表示: ____ __, ___ ___(只需表示,不必化簡(jiǎn))

2)以上結(jié)果可以驗(yàn)證哪個(gè)乘法公式?

請(qǐng)寫(xiě)出這個(gè)乘法公式__ ____;

3)利用(2)中得到的公式,

計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了更好地開(kāi)展球類(lèi)運(yùn)動(dòng),體育組決定用1600元購(gòu)進(jìn)足球8個(gè)和籃球14個(gè),并且籃球的單價(jià)比足球的單價(jià)多20元,請(qǐng)解答下列問(wèn)題:

1)求出足球和籃球的單價(jià);

2)若學(xué)校欲用不超過(guò)3240元,且不少于3200元再次購(gòu)進(jìn)兩種球50個(gè),求出有哪幾種購(gòu)買(mǎi)方案?

3)在(2)的條件下,若已知足球的進(jìn)價(jià)為50元,籃球的進(jìn)價(jià)為65元,則在第二次購(gòu)買(mǎi)方案中,哪種方案商家獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD,定點(diǎn)EF分別在直線AB,CD上,平行線AB,CD之間有一動(dòng)點(diǎn)P

1)如圖1,當(dāng)P點(diǎn)在EF的左側(cè)時(shí),∠AEP,∠EPF,∠PFC滿(mǎn)足數(shù)量關(guān)系為   ,如圖2,當(dāng)P點(diǎn)在EF的右側(cè)時(shí),∠AEP,∠EPF,∠PFC滿(mǎn)足數(shù)量關(guān)系為   

2)如圖3,當(dāng)∠EPF90°,F(xiàn)P平分∠EFC時(shí),求證:EP平分∠AEF

3)如圖4,QE,QF分別平分∠PEB和∠PFD,且點(diǎn)PEF左側(cè).

若∠EPF60°,則∠EQF   

猜想∠EPF與∠EQF的數(shù)量關(guān)系,并說(shuō)明理由;

查看答案和解析>>

同步練習(xí)冊(cè)答案