【題目】如圖,在矩形中,沿著對角線翻折能與重合,且與交于點,若,則的面積為__________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定“中小學(xué)生每天在校體育活動時間不低于1h”,為此,某市就“每天在校體育活動”時間的問題隨機(jī)調(diào)查了轄區(qū)內(nèi)320名初中學(xué)生,根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖(部分)如圖所示,其中分組情況是:
A組:t<0.5h;B組:0.5h≤t<1h;C組:1h≤t<1.5h;D組:t≥1.5h
請根據(jù)上述信息解答下列問題:
(1)C組的人數(shù)是 ;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在 組內(nèi);
(3)若該市轄區(qū)內(nèi)約有32000名初中學(xué)生,請你估計其中達(dá)國家規(guī)定體育活動時間的人約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,點E是邊AD中點,點F在邊CD上,且FE⊥BE,設(shè)BD與EF交于點G,則△DEG的面積是___
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點,點A在點B的左邊,與y軸交于點C,點D是拋物線的頂點,且A(﹣6,0),D(﹣2,﹣8).
(1)求拋物線的解析式;
(2)點P是直線AC下方的拋物線上一動點,不與點A、C重合,求過點P作x軸的垂線交于AC于點E,求線段PE的最大值及P點坐標(biāo);
(3)在拋物線的對稱軸上足否存在點M,使得△ACM為直角三角形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過原點O及點A和點B.
(1)求拋物線的解析式;
(2)如圖1,設(shè)拋物線的對稱軸與x軸交于點C,將直線沿y軸向下平移n個單位后得到直線l,若直線l經(jīng)過B點,與y軸交于點D,且與拋物線的對稱軸交于點E.若P是拋物線上一點,且PB=PE,求點P的坐標(biāo);
(3)如圖2,將拋物線向上平移9個單位得到新拋物線,直接寫出下列兩個問題的答案:
①直線至少向上平移多少個單位才能與新拋物線有交點?
②新拋物線上的動點Q到直線的最短距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)比較左、右兩圖的陰影部分面積,可以得到乘法公式 _________ (用式子表達(dá)).
(2)運用你所得到的公式,計算(a+2b﹣c)(a﹣2b﹣c).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以直線AB上一點O為端點作射線OC,使∠AOC=65°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OA上,則∠COE= ;
(2)如圖②,將直角三角板DOE繞點O順時針方向轉(zhuǎn)動到某個位置,若OC恰好平分∠AOE,求∠COD的度數(shù);
(3)如圖③,將直角三角板DOE繞點O任意轉(zhuǎn)動,如果OD始終在∠AOC的內(nèi)部,試猜想∠AOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,點A的坐標(biāo)為(10,0),拋物線y=ax2+bx+4過點B,C兩點,且與x軸的一個交點為D(﹣2,0),點P是線段CB上的動點,設(shè)CP=t(0<t<10).
(1)請直接寫出B、C兩點的坐標(biāo)及拋物線的解析式;
(2)過點P作PE⊥BC,交拋物線于點E,連接BE,當(dāng)t為何值時,∠PBE=∠OCD?
(3)點Q是x軸上的動點,過點P作PM∥BQ,交CQ于點M,作PN∥CQ,交BQ于點N,當(dāng)四邊形PMQN為正方形時,請求出t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com