如圖,△ABC中,AB=AC,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:DF=EF.

證明:過點D作DM∥AC交BC于M,
∴∠DMB=∠ACB,∠FDM=∠E,
∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠DMB,
∴BD=MD,
∵BD=CE,
∴MD=CE,
在△DMF和△ECF中,

∴△DMF≌△ECF(AAS),
∴DF=EF.
分析:首先過點D作DM∥AC交BC于M,易證得△DMF≌△ECF,繼而證得DF=EF.
點評:此題考查了等腰三角形的性質與判定以及全等三角形的判定與性質.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案