(2012•朝陽區(qū)二模)如圖,D是△ABC中AB邊的中點(diǎn),△BCE和△ACF都是等邊三角形,M、N分別是CE、CF的中點(diǎn).
(1)求證:△DMN是等邊三角形;
(2)連接EF,Q是EF中點(diǎn),CP⊥EF于點(diǎn)P.求證:DP=DQ.
同學(xué)們,如果你覺得解決本題有困難,可以閱讀下面兩位同學(xué)的解題思路作為參考:
小聰同學(xué)發(fā)現(xiàn)此題條件中有較多的中點(diǎn),因此考慮構(gòu)造三角形的中位線,添加出了一些輔助線;小慧同學(xué)想到要證明線段相等,可通過證明三角形全等,如何構(gòu)造出相應(yīng)的三角形呢?她考慮將△NCM繞頂點(diǎn)旋轉(zhuǎn)到要證的對(duì)應(yīng)線段的位置,由此猜想到了所需構(gòu)造的三角形的位置.
分析:(1)取AC的中點(diǎn)G,連接NG,DG,再由D為AB的中點(diǎn),得到DG為三角形ABC的中位線,利用三角形中位線定理得到DG平行于BC,且等于BC的一半,再由NC為三角形AFC的中位線,得到NG與AF平行,由三角形ACF為等邊三角形,得到三角形NCG為等邊三角形,可得出NG=NC,由M為等邊三角形BEC邊EC的中點(diǎn),得到DG=CM,由DG與BC平行,利用兩直線平行同旁內(nèi)角互補(bǔ),得到∠DGC+∠GCB=180°,進(jìn)而得到∠NGD+∠GCB=240°,而∠GCB+∠NCM=240°,可得出∠NGD=∠NCM,利用SAS得到△NGD≌△NCM,可得出ND=DM,再由∠GNC=∠GND+∠CND=∠MNC+∠CND=60°,得到∠MND=60°,即可得到三角形MND為等邊三角形;
(2)由NQ為三角形ECF的中位線,得到NQ等于EC的一半,再由PC垂直于PE,M為CE斜邊上的中點(diǎn),得到PM為CE的一半,可得出NQ=PM,由PM=ME,利用等邊對(duì)等角,得到一對(duì)角相等,由MN為三角形ECF的中位線,得到MN與EF平行,利用兩直線平行得到內(nèi)錯(cuò)角相等,等量代換得到∠PMN=∠QNM,利用等式的性質(zhì)得到∠QND=∠PMD,利用SAS得到△QND≌△PMD,利用全等三角形的對(duì)應(yīng)邊相等即可得到DP=DQ.
解答:證明:(1)取AC的中點(diǎn)G,連接NG、DG,
∵D為AB的中點(diǎn),即DG為△ABC的中位線,
∴DG=
1
2
BC,DG∥BC,
∵N為FC的中點(diǎn),即NG為△AFC的中位線,
∴NG∥AF,又△ACF為等邊三角形,
∴∠CNG=∠F=∠CGN=∠CAF=60°,
∴△NGC是等邊三角形,
∴NG=NC,
∵M(jìn)為等邊三角形BEC邊EC的中點(diǎn),
∴DG=CM=
1
2
EC=
1
2
BC,
∵∠DGC+∠GCB=180°,
∴∠NGD+∠GCB=240°,
∵∠GCB+∠NCM=240°,
∴∠NGD=∠NCM,
在△NGD和△NCM中,
NG=NC
∠NGD=∠NCM
GD=CM

∴△NGD≌△NCM(SAS),
∴ND=NM,∠GND=∠CNM,
∴∠GNC=∠GND+∠CND=∠MNC+∠CND=60°,
∴∠DNM=60°,
∴△DMN是等邊三角形;

(2)連接QN、PM,
∵QN為△FCE的中位線,PM為直角三角形PCE斜邊上的中線,
∴QN=
1
2
CE=PM,
∵Rt△CPE中,PM=EM,
∴∠MEP=∠MPE,
∵M(jìn)N∥EF,
∴∠MPE=∠PMN,∠FQN=∠QNM,
∵NQ∥CE,
∴∠FQN=∠MEP,
∴∠PMN=∠QNM,又∠NMD=∠MND=60°,
∴∠PMN+∠NMD=∠QNM+∠MND,即∠QND=∠PMD,
在△QND和△PMD中,
ND=MD
∠QND=∠PMD
NQ=MP
,
∴△QND≌△PMD(SAS),
∴DQ=DP.
點(diǎn)評(píng):此題考查了等邊三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),平行線的判定與性質(zhì),以及三角形的中位線定理,熟練掌握判定與性質(zhì),靈活運(yùn)用中位線定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)二模)2012年1月21日,北京市環(huán)保監(jiān)測(cè)中心開始在其官方網(wǎng)站上公布PM2.5的研究性監(jiān)測(cè)數(shù)據(jù).PM2.5是指大氣中直徑小于或等于0.0000025米即2.5微米的顆粒物,也稱為可入肺顆粒物.把0.0000025用科學(xué)記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)二模)擲一枚質(zhì)地均勻的正方體骰子,骰子的六個(gè)面上分別刻有1到6的點(diǎn)數(shù),擲得朝上一面的點(diǎn)數(shù)小于3的概率為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)二模)如圖,直線m∥n,直角三角板ABC的頂點(diǎn)A在直線m上,則∠α等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)二模)有一組數(shù)據(jù):0,2,3,4,6,這組數(shù)據(jù)的方差是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)二模)如圖,在⊙O中,直徑AB⊥弦CD于點(diǎn)H,E是⊙O上的點(diǎn),若∠BEC=25°,則∠BAD的度數(shù)為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案