【題目】如圖,四邊形ABCD是邊長為1的正方形,動點(diǎn)E、F分別從點(diǎn)C,D出發(fā),以相同速度分別沿CB,DC運(yùn)動(點(diǎn)E到達(dá)C時,兩點(diǎn)同時停止運(yùn)動).連接AE,BF交于點(diǎn)P,過點(diǎn)P分別作PM∥CD,PN∥BC,則線段MN的長度的最小值為( )
A. B. C. D. 1
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在李村河治理工程實驗過程中,某工程隊接受一項開挖水渠的工程,所需天數(shù)(天)與每天完成的工程量(天)的函數(shù)關(guān)系圖象如圖所示,是雙曲線的一部分.
請根據(jù)題意,求與之間的函數(shù)表達(dá)式;
若該工程隊有臺挖掘機(jī),每臺挖掘機(jī)每天能夠開挖水渠米,問該工程隊需用多少天才能完成此項任務(wù)?
如果為了防汛工作的緊急需要,必須在一個月內(nèi)(按天計算)完成任務(wù),那么每天至少要完成多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC,∠ABC=90°,以直角邊AB為直徑作⊙O,交斜邊AC于點(diǎn)D,連接BD.
(1)若AD=3,BD=4,求邊BC的長;
(2)取BC的中點(diǎn)E,連接ED,試證明:ED與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC與BD交于點(diǎn)O.過點(diǎn)C作BD的平行線,過點(diǎn)D作AC的平行線,兩直線相交于點(diǎn)E.
(1)求證:四邊形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F,刪△AOF的面積等于( )
A. 10 B. 9 C. 8 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】年月日是第個世界讀書日,為迎接第個世界讀書日的到來,某校舉辦讀書分享大賽活動:大賽以“推薦分享”為主題,參賽者選擇一本自己最喜歡的書,然后給該書寫一段推薦語、一篇讀書心得、舉辦一場讀書講座.大賽組委會對參賽者提交的推薦語、讀書心得、舉辦的讀書講座進(jìn)行打分(各項成績均按百分制),綜合成績排名第一的選手將獲得大賽一等獎.現(xiàn)有甲、乙兩位同學(xué)的各項成績?nèi)缦卤硭荆?/span>
參賽者 | 推薦語 | 讀書心得 | 讀書講座 |
甲 | |||
乙 |
(1)若將三項成績的平均分作為參賽選手的綜合成績,則甲、乙二人誰最有可能獲得大賽一等獎?請通過計算說明理由.
(2)若“推薦語”“讀書心得”“讀書講座”的成績按確定綜合成績,則甲、乙二人誰最有可能獲得大賽一等獎?請通過計算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,CE AB于E, CD平分ECB, 交過點(diǎn)B的射線于D, 交AB于F, 且BC=BD.
(1)求證:BD是⊙O的切線;
(2)若AE=9, CE=12, 求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=2,BC=1,以斜邊為一邊向右上方作正方形ABDE,連接CD,則CD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平行四邊形ABCD中,對角線AC與BD相交于點(diǎn)O,經(jīng)過點(diǎn)O的直線與邊AB相交于點(diǎn)E,與邊CD相交于點(diǎn)F.
(1)求證:OE=OF;
(2)如圖2,連接DE,BF,當(dāng)DE⊥AB時,在不添加其他輔助線的情況下,直接寫出腰長等于BD的所有的等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com