(2007•河北)在一個(gè)暗箱里放有a個(gè)除顏色外其它完全相同的球,這a個(gè)球中紅球只有3個(gè).每次將球攪拌均勻后,任意摸出一個(gè)球記下顏色再放回暗箱.通過(guò)大量重復(fù)摸球?qū)嶒?yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%,那么可以推算出a大約是( )
A.12
B.9
C.4
D.3
【答案】分析:摸到紅球的頻率穩(wěn)定在25%,即=25%,即可即解得a的值.
解答:解:∵摸到紅球的頻率穩(wěn)定在25%,
=25%,
解得:a=12.
故本題選A.
點(diǎn)評(píng):本題考查:頻率、頻數(shù)的關(guān)系:頻率=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年寧夏石嘴山市平羅縣寶豐中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

(2007•河北)在一個(gè)暗箱里放有a個(gè)除顏色外其它完全相同的球,這a個(gè)球中紅球只有3個(gè).每次將球攪拌均勻后,任意摸出一個(gè)球記下顏色再放回暗箱.通過(guò)大量重復(fù)摸球?qū)嶒?yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%,那么可以推算出a大約是( )
A.12
B.9
C.4
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《尺規(guī)作圖》(01)(解析版) 題型:解答題

(2007•河北)在圖1-5中,正方形ABCD的邊長(zhǎng)為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例:
當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
思考發(fā)現(xiàn):
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°到△CHD的位置.這樣,對(duì)于剪拼得到的四邊形FGCH(如圖1),過(guò)點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實(shí)踐探究:
(1)正方形FGCH的面積是______;(用含a,b的式子表示)
(2)類比圖1的剪拼方法,請(qǐng)你就圖2-圖4的三種情形分別畫出剪拼成一個(gè)新正方形的示意圖.

聯(lián)想拓展:
小明通過(guò)探究后發(fā)現(xiàn):當(dāng)b≤a時(shí),此類圖形都能剪拼成正方形,且所選取的點(diǎn)G的位置在BA方向上隨著b的增大不斷上移;當(dāng)b>a時(shí),如圖5的圖形能否剪拼成一個(gè)正方形?若能,請(qǐng)你在圖中畫出剪拼的示意圖;若不能,簡(jiǎn)要說(shuō)明理由.


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年廣東省汕頭市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:選擇題

(2007•河北)在一個(gè)暗箱里放有a個(gè)除顏色外其它完全相同的球,這a個(gè)球中紅球只有3個(gè).每次將球攪拌均勻后,任意摸出一個(gè)球記下顏色再放回暗箱.通過(guò)大量重復(fù)摸球?qū)嶒?yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%,那么可以推算出a大約是( )
A.12
B.9
C.4
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年河北省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•河北)在圖1-5中,正方形ABCD的邊長(zhǎng)為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例:
當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
思考發(fā)現(xiàn):
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°到△CHD的位置.這樣,對(duì)于剪拼得到的四邊形FGCH(如圖1),過(guò)點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實(shí)踐探究:
(1)正方形FGCH的面積是______;(用含a,b的式子表示)
(2)類比圖1的剪拼方法,請(qǐng)你就圖2-圖4的三種情形分別畫出剪拼成一個(gè)新正方形的示意圖.

聯(lián)想拓展:
小明通過(guò)探究后發(fā)現(xiàn):當(dāng)b≤a時(shí),此類圖形都能剪拼成正方形,且所選取的點(diǎn)G的位置在BA方向上隨著b的增大不斷上移;當(dāng)b>a時(shí),如圖5的圖形能否剪拼成一個(gè)正方形?若能,請(qǐng)你在圖中畫出剪拼的示意圖;若不能,簡(jiǎn)要說(shuō)明理由.


查看答案和解析>>

同步練習(xí)冊(cè)答案