如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于兩點.
(1)試確定上述反比例函數(shù)和一次函數(shù)的表達式;
(2)求的面積.
(1),;(2)
【解析】此題考查了利用待定系數(shù)法確定函數(shù)的解析式
(1)首先把A的坐標代入反比例函數(shù)關(guān)系式中可以求出m,再把B(1,n)代入反比例函數(shù)關(guān)系式中可以求出n的值,然后利用待定系數(shù)法就可以求出一次函數(shù)的解析式;
(2)△AOB的面積不能直接求出,先求出一次函數(shù)與x軸的交點坐標,然后利用割補法即可求出結(jié)果.
(1)點在反比例函數(shù)的圖象上,
.反比例函數(shù)的表達式為.
點也在反比例函數(shù)的圖象上,,即.
把點,點代入一次函數(shù)中,得
解得一次函數(shù)的表達式為.
(2)在中,當時,得.直線與軸的交點為.
線段將分成和,
.
科目:初中數(shù)學 來源: 題型:
12 | x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點,與y軸、x軸分別相交于B、C兩點,且C(2,0).當x<–1時,一次函數(shù)值大于反比例函數(shù)的值,當x>–1時,一次函數(shù)值小于反比例函數(shù)值.
(1) 求一次函數(shù)的解析式;
(2) 設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對稱.在y2= (x>0)的圖象上取一點P(P點的橫坐標大于2),過P作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,一次函數(shù)的圖象與反比例函數(shù)(x<0)的圖象相交于A點,與y軸、x軸分別相交于B、C兩點,且C(2,0),當x<-1時,一次函數(shù)值大于反比例函數(shù)值,當x>-1時,一次函數(shù)值小于反比例函數(shù)值.
(1)求一次函數(shù)的解析式;
(2)設(shè)函數(shù)(x>0)的圖象與(x<0)的圖象關(guān)于y軸對稱,在(x>0)的圖象上取一點P(P點的橫坐標大于2),過P點作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點的坐標.
解答:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點,與y軸、x軸分別相交于B、C兩點,且C(2,0).當x<–1時,一次函數(shù)值大于反比例函數(shù)的值,當x>–1時,一次函數(shù)值小于反比例函數(shù)值.
(1) 求一次函數(shù)的解析式;
(2) 設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對稱.在y2= (x>0)的圖象上取一點P(P點的橫坐標大于2),過P作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點,與y軸、x軸分別相交于B、C兩點,且C(2,0).當x<–1時,一次函數(shù)值大于反比例函數(shù)的值,當x>–1時,一次函數(shù)值小于反比例函數(shù)值.
(1) 求一次函數(shù)的解析式;
(2) 設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對稱.在y2= (x>0)的圖象上取一點P(P點的橫坐標大于2),過P作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com